
Textinator
Release 1.0.0

Dmytro Kalpakchi

Nov 17, 2022

CONTENTS:

1 Tutorial 3
1.1 [Part 1] Exploring annotation tasks supported out-of-the-box . 3
1.2 [Part 2] Adding a new data source . 8
1.3 [Part 3] Creating your first project . 12
1.4 [Part 4] Exploring a data explorer . 14
1.5 [Part 5] Creating a custom annotation task . 17
1.6 [Part 6] Associating actions with your markers . 25
1.7 [Part 7] Setting up human evaluation . 28

2 Developer Documentation 31
2.1 Labeler Plugins API . 31

3 API 35
3.1 Models . 35

Python Module Index 51

Index 53

i

ii

Textinator, Release 1.0.0

Textinator is an open-source internationalized highly-customizable annotation and evaluation tool for Natural Lan-
guage Processing (NLP) tasks. The tool offers a web interface with a user-friendly UI and supports a number of NLP
tasks out-of-the-box:

• Question Answering

• Question Answering with Complexity Ranking

• Multiple Choice Question Answering

• Multiple Choice Question Answering with Complexity Ranking

• Named Entity Recognition

• Pronoun Resolution

• Co-reference Chain Resolution

• Machine Translation

Textinator is currently localized for 4 languages (presented in an alphabetical order):

• English

• Russian

• Swedish

• Ukrainian

We are constantly working to improve available localizations and extend them to new languages. If you are willing to
help, please visit our Github repository.

CONTENTS: 1

Textinator, Release 1.0.0

2 CONTENTS:

CHAPTER

ONE

TUTORIAL

1.1 [Part 1] Exploring annotation tasks supported out-of-the-box

Currently Textinator supports 8 annotation tasks out-of-the-box. Note that although adding new markers to these default
annotation tasks is possible, but data exporters might not support the added markers. Please consult the documentation
for each annotation task separately on the the page about custom tasks. The information about how you can create a
completely custom annotation task if you wish so, is available on the same page.

Table of Contents

• Question Answering

• Question Answering with Ranking

• Multiple Choice Question Answering

• Multiple Choice Question Answering with Ranking

• Named Entity Recognition

• Pronoun Resolution

• Co-reference Chain Resolution

• Machine Translation

3

Textinator, Release 1.0.0

1.1.1 Question Answering

1.1.2 Question Answering with Ranking

4 Chapter 1. Tutorial

Textinator, Release 1.0.0

1.1.3 Multiple Choice Question Answering

1.1.4 Multiple Choice Question Answering with Ranking

1.1. [Part 1] Exploring annotation tasks supported out-of-the-box 5

Textinator, Release 1.0.0

1.1.5 Named Entity Recognition

1.1.6 Pronoun Resolution

6 Chapter 1. Tutorial

Textinator, Release 1.0.0

1.1.7 Co-reference Chain Resolution

1.1.8 Machine Translation

1.1. [Part 1] Exploring annotation tasks supported out-of-the-box 7

Textinator, Release 1.0.0

1.2 [Part 2] Adding a new data source

Table of Contents

• Which data source type should I choose?

• What server is compatible with Texts API?

• What if I really want to upload data via UI?

Data sources can only be added by staff members (check for the small cog near your user icon in the top right corner)
that have been assigned to the project_managers user group. You can check if you have been assigned to that user
group by clicking on Profile -> Settings, which should show the page, similar to the one on the screenshot below.

Check that the User details pane (marked by the right rectangle in the screenshot above) has project_managers in the
list of your user groups. If it doesn’t, please contact your system administrator to be added to that group.

After you have been added to the project_managers group, you can access the data source creation form in multiple
ways:

via Quick links pane on the Welcome page.

via Admin panel dashboard

8 Chapter 1. Tutorial

Textinator, Release 1.0.0

via Admin panel/Data sources

All of these methods will lead to exactly the same form, shown below.

The following fields are mandatory for creating a data source:

• name - the name of your dataset (max. 50 characters). Although there are no strict requirement on uniqueness,
make sure your name is unique enough, so that you can find your dataset when creating the project.

• type - currently Textinator supports 4 types of data sources:

– plain text – input text directly in the admin interface (mostly for testing)

1.2. [Part 2] Adding a new data source 9

Textinator, Release 1.0.0

– plain-text files – a bunch of files hosted on the same server as Textinator

– JSON files – a bunch of JSON files hosted on the same server as Textinator

– Texts API – a REST API that will be used for getting each datapoint (the endpoint should be specified)

• specification - a JSON-specification, dependent on type:

– for plain text type you just enter a number of textual snippets to be used as data for annotation;

– for plain-text files you need to specify files and/or folders containing your files (see below on where these
files/folders should be located);

– for JSON files you need to specify files and/or folders similar to plain-text files, but also a key in the JSON
object that will contain the text;

– for Texts API you need to specify only the endpoint to the server compatible with Texts API (see below).

• language - the language of the data

• formatting - formatting of the data, can be either plain text or formatted text (e.g., with tabs) or markdown.

Optional fields include:

• post-processing methods - any Python methods defined by your system administrator that can be used for cleaning
the data (e.g., remove Wikipedia’s infoboxes). Note that currently Textinator does NOT provide any such methods
by default, so talk to your system administrator if you need any such methods.

• is public? - by default all data sources are private and can be accessed via UI only by the person who created the
data source. If you want to make it accessible to all Textinator users, tick this option. Note, that all people with
access to your server will be able to access the underlying data (unless you use Texts API).

1.2.1 Which data source type should I choose?

If you want to do quick and dirty annotation test, say, to check how well the annotators understand the instructions, you
should use a plain text type and just copy-paste a couple of texts there. Recall that if your texts are pre-formatted (e.g.,
with tabs) or contain markdown, you should specify the formatting type accordingly.

In all other circumstances we recommend using Texts API for multiple reasons:

1. Limiting access to your data. If you use either Plain-text files or JSON files, they should be located on the very
same server as Textinator. So at the very least your system administrator will have access to your data. A good
way to avoid it is to setup your own server, compatible with Texts API (read below), so that you can have full
control over who has access to the data.

2. Decoupling. Textinator is an annotation platform, not a data management platform.

3. Flexibility. Data comes in all possible shapes and forms and it would be a very hard task to support various data
sources. For instance, some researchers might have data in MySQL or SQLite, others in MongoDB and others
in ElasticSearch. Supporting all of these inputs, some of which may change their APIs in future, is a mammoth
task. Instead, people can implement their own small REST APIs and just provide the endpoint to Textinator -
much more flexible!

4. Privacy considerations. If you want to annotate e-mails or SMS, then authors of the data might request deletion
of their data quoting laws such as GDPR in the European Union. Neither deleting only parts of the datasets nor
anonymizing the data is possible via Textinator.

5. Disk space limitation. Textual datasets can get quite large (think Wikipedia), which will induce unnecessary
overhead on the machine running Textinator - we want to avoid that. Furthermore, as time passes, even smaller
datasets in large amounts may end up requiring unreasonable large amounts of space. At that point, one would
need to set some kind of expiration policy as to when data should be auto-removed along with reminders to the
data owners. . . So I will just reiterate Textinator is an annotation platform :)

10 Chapter 1. Tutorial

Textinator, Release 1.0.0

The remaining two types of data sources (plain-text files and JSON files) are left for backward compatibility with pre-
release versions of Textinator. They allow you to upload your data directly to the server via the secure tool of your choice
(e.g., scp or rsync) to the data folder (Textinator/data by default). Then you can specify the paths to the files/folders
relative to this data folder, given that they are either plain-text or JSON files.

1.2.2 What server is compatible with Texts API?

Note: Requires programming skills.

Texts API is pretty simple and requires your server to support 4 GET requests:

GET /get_datapoint?key=your-key HTTP/1.1

Response

{
"text": "text-for-your-key"

}

GET /get_random_datapoint HTTP/1.1

Response

{
"key": "key-for-the-random-datapoint",
"text": "text-for-the-key-above"

}

GET /size HTTP/1.1

Response

{
"size": "size-of-your-dataset"

}

GET /get_source_name?key=your-key HTTP/1.1

Response

{
"name": "source-name-for-the-datapoint-under-your-key"

}

A simple example Flask server is provided in the example_texts_api folder in the GitHub repository.

1.2. [Part 2] Adding a new data source 11

https://github.com/dkalpakchi/Textinator/tree/master/example_texts_api

Textinator, Release 1.0.0

1.2.3 What if I really want to upload data via UI?

Warning: This feature is subject to change or removal in future.

Currently there is no recommended way of uploading your files into Textinator. However, if you really insist, there is a
temporary workaround that has multiple limitations (introduced to discourage its usage):

1. Your data will be accessible by all other staff members of Textinator. So this solution should only be used either
if you are the only user of Textinator or there is an honor code in place.

2. The upload size is limited to 20MB per file.

3. You are still limited to either plain-text files or JSON files (that can contain plain text, preformatted text or
markdown though).

In order to use this workaround, you need to ask your system administrator to add you to the file_managers user group.
Then you will see “FileBrowser” in the menu of the admin UI and will be able to access Textinator’s file browser. You
will then need to create a folder with the same name as your username and upload your files in that folder. If you place
your files in any other folder, they will NOT be seen by Textinator.

1.3 [Part 3] Creating your first project

After having created a data source, we can actually go ahead and create our first Textinator project. Similar to adding
a new data source, there are 3 ways of accessing the project creation form.

via Quick links pane on the Welcome page.

via Admin panel dashboard

via Admin panel/Projects

12 Chapter 1. Tutorial

Textinator, Release 1.0.0

All of these methods will lead to exactly the same form, shown below.

The following fields are mandatory for creating a project:

Generic tab

• title - the title of your project (max. 50 characters);

• language - the language of your project, needs to match the language of the data sources (is used to filter
out only annotators who have indicated to be fluent in that language);

• short description - a short and concise description of your project (to be shown in the Project card);

• publishing date - date of publishing (important for projects, open to public, which is true by default);

• expiration date - last date when the annotations can still be performed.

Task specification tab

• type of the annotation task - one of the 8 annotation tasks supported out of the box or Generic for your
custom annotation tasks.

Data tab

• data sources - the data to be annotated, needs to match the langauge of the project.

1.3. [Part 3] Creating your first project 13

Textinator, Release 1.0.0

The following fields are optional and most of them are self-explanatory. We will highlight only those that relate to the
mandatory fields.

Task specification tab

• guidelines - the rich-text input for annotation guidelines, where you could give an elaborate description
with examples (these guidelines will be accessible by annotators at all times as a modal window);

• reminders - the summary of essential points of the guidelines, visible at all times and cannot be hidden.

Settings tab

• should the project be public? - a switch of whether the project should be open to public (then publishing
date plays a vital role). If the switch is off, the users will not see the project

• should selecting the labels be allowed? - whether annotated spans of text should be clickable (essential
that it is turned on if you have any relations, since this is how relations are annotated in the current version
of Textinator)

After you have created the project it should appear under My projects tab in Textinator and have a card that has the
following anatomy.

If you have added a summary video, it will appear between the project title and short description.

1.4 [Part 4] Exploring a data explorer

Table of Contents

• Annotation statistics & progress tracking

• Exporting annotations

• PDF time report

The role of data explorer is to provide you with administration capabilities, as well as give a birds-eye view of the
annotated data.

Note: The data overview functionality is expected to broaden in Textinator v1.1

14 Chapter 1. Tutorial

Textinator, Release 1.0.0

1.4.1 Annotation statistics & progress tracking

Textinator provides a birds-eye view of the annotated data and the annotation process. Speficially, it shows the distri-
bution of lengths for each marker that is present in the project (the top left graph in the screenshot below).

For administrative purposes, you can also track the timing per annotation for each annotator (top right graph), their
annotation progress and how many texts they chose to skip (bottom left graph), as well the overall sizes of the data
sources, as a reminder (bottom right graph). Note that the screenshot is taken from the real-world annotation project,
so the names of the data sources and annotators are edited out for privacy reasons. On top of that if annotators flag any
texts as problematic, you can also see their comments in the data explorer under the red pane called “Flagged texts”
(see example in the screenshot below).

1.4. [Part 4] Exploring a data explorer 15

Textinator, Release 1.0.0

1.4.2 Exporting annotations

Textinator exports data in a custom concise JSON format specifically designed for each annotation task, supported out
of the box. You will get data exported in this format if you click on the green “Export to JSON” button (see screenshots
in the previous section).

If you have done any customization to an out-of-the-box task, we recommend using a generic export functionality,
featuring a generic export format (thus less concise), but including all of your annotation. You can use generic export
by clicking the green “Export to JSON (generic)” button.

1.4.3 PDF time report

Textinator is also capable of generating a per-month time report per annotator. Note that this report can NOT be a
ground for payments, since Textinator provides only an estimate of the spent time. For instance, the time needed for
breaks or potential research connected to the annotation process should also be counted, but is not accounted for in
Textinator’s report. The report should be mostly used as a sanity check and if the reported numbers and the real numbers
differ by a substantial amount, it’s just a flag to the project manager that this should be investigated further.

16 Chapter 1. Tutorial

Textinator, Release 1.0.0

1.5 [Part 5] Creating a custom annotation task

Table of Contents

• Minor modifications to out-of-the-box task types

• Major modifications to out-of-the-box task types

• Defining custom markers

• Defining custom relations

1.5.1 Minor modifications to out-of-the-box task types

You can the following modifications to the out-of-the-box tasks without any ramifications to the data export:

• color of markers

• hotkeys for markers or relations

• changing visualization type for a relation (graph or list)

• adding custom restrictions on the number of markers (e.g., there should be at least 2 distractors per each submitted
multiple choice question)

The changes of color and hotkeys for the markers can be done via the project’s form Project-specific markers tab
(relevant fields are marked by a red rectangle in the screenshot below).

1.5. [Part 5] Creating a custom annotation task 17

Textinator, Release 1.0.0

The changes of hotkeys and visualization type for the relations can be done via the project’s form Project-specific
relations tab (relevant fields are marked by a red rectangle in the screenshot below).

Custom restrictions for the markers can be added via the Restrictions pane available at the bottom of each Marker’s
form. For instance, the restriction of having at least 2 markers of such kind can be added as shown in the screenshot
below.

18 Chapter 1. Tutorial

Textinator, Release 1.0.0

1.5.2 Major modifications to out-of-the-box task types

Adding custom markers or relations to the out-of-the-box tasks is also possible, but current export functionality is
configured to work only with the default markers/relations to give as consice JSON file as possible. Having said that,
you could try to add markers/relations to your task and see if the default export functionality still works. If it doesn’t, you
can use the generic export by clicking on the Export JSON (generic) button under Data explorer, which is guaranteed
to contain all annotations, albeit in a somewhat longer format.

1.5.3 Defining custom markers

If you want to annotate a task currently unsupported by Textinator or make a major modification to an already existing
task, you will have to define custom units of annotation. Textinator supports such customized definitions through
Markers via Admin panel/Markers. You need just a couple of things to define a basic Marker:

• defining a marker name to be used when exporting data (mandatory);

• choose a color (mandatory);

• defining the translation of the marker name to the language (among supported by Textinator) that you are going
to use for annotation (optional, but highly recommended);

• choose a shortcut for the marker (optional).

Let’s say we want the annotators to find and mark the main message of the text in Swedish, then filled-in Marker fields
(corresponding to the properties listed above), would look like in the picture below.

1.5. [Part 5] Creating a custom annotation task 19

Textinator, Release 1.0.0

Now that we have defined a Marker, this definition will be accessible to all Textinator staff members. Now we need
to add a marker following this definition to our project. In order to do that you should find the project of interest via
Admin panel/Projects. Open the project and choose the tab called Project-specific markers and then click Add another
Project-Specific Marker. You should get a form similar to the one shown below

Choose a Marker that you have defined before and define variant-specific properties:

20 Chapter 1. Tutorial

Textinator, Release 1.0.0

1. You need to specify the type of annotations that should be made with this marker in the project. For instance, in
some cases, you want to mark the correct answer in the text, in which case you should select Marker (text spans)
as your annotation type. If you do not want the correct answers to be in the text, you might want to give annotators
the freedom of providing them as a text input, in which case select Short free-text input. If you want to perform
text classification, you will need to select Marker (whole text). The other marker types are self-explanatory.

2. If you want your marker to be annotated as a part of the unit, you will need to specify a marker unit. For instance,
when creating multiple choice questions, consisting of a question, a correct answer and 3 distractors, then all
of them would be considered a unit. In which case you will need to create a unit first (by clicking on the green
“+” button below the Marker unit field) and then choosing one and same unit for all 3 markers (question, correct
answer and distractor).

3. If a marker belongs to a unit, you can also specify order of a marker in the unit by using Order in a unit field.
For instance, if you want markers to appear in the order question - correct answer - distractor, then the Order in
a unit field of the Question marker should have the value of 1, of the Correct answer marker - the value of 2 and
of the Distractor marker - the value of 3.

4. If you require a specific number of annotations to be made by a marker prior to the submission, you could defined
that using the Restrictions pane. For instance, if you need your annotators to enter at least two distractors, you
need to add a Restriction of the kind >= and the value of 2. Note that you can add a restriction only after you
have saved your marker variant for the first time.

5. If you wanted to define custom actions, available when right-clicking the marker, you could define them using
Context menu items pane. Note that you can add a context menu item only after you have saved your marker
variant for the first time. Also note that only actions previously defined by the system administrator can be used
for context menu items.

In our example case, we want annotators to be able to enter main message as a free text and this is the only marker
connected to it, so no units are required. We also do not need any restrictions or context menu items. Hence, the filled
in form would look as below.

1.5. [Part 5] Creating a custom annotation task 21

Textinator, Release 1.0.0

1.5.4 Defining custom relations

If you have more than one marker, then you might want to define custom relations between the markers. Textinator
supports such customized definitions through Relations. You need just a couple of things to define a basic Relation:

• defining a relation name to be used when exporting data (mandatory);

• choose marker pairs, for which the relation is applicable (mandatory);

• choose the directionality of the relation (mandatory);

• choose graphical representation type, i.e., graph or list (mandatory);

• defining the translation of the relation name to the language (among supported by Textinator) that you are going
to use for annotation (optional, but highly recommended);

• choose a shortcut for the relation (optional).

Let’s say we want the annotators to specify a supporting fact for each main message they find. Then we need to define
another marker called Supporting fact (using the same procedure as before). Then we can define a relation Supports
between the Supporting fact and Main message via Admin panel/Relations using the form below.

22 Chapter 1. Tutorial

Textinator, Release 1.0.0

First you will need to define a marker pair of Main message and Supporting fact, which you can do by clicking on the
green plus icon below the Marker pairs text field. This will bring the pop-up window, which would look as follows
when filled in.

1.5. [Part 5] Creating a custom annotation task 23

Textinator, Release 1.0.0

Afterwards, you should click on Save in the pop-up under Actions and the popup should close adding this pair to the
Marker pairs field of the original relation. The completely filled-in form for the relation should look as shown below.

Now that we have defined a Relation, this definition will be accessible to all Textinator staff members. Now we need
to add a relation following this definition to our project. In order to do that you should find the project of interest via
Admin panel/Projects. Open the project and choose the tab called Project-specific relations and then click Add another
Project-Specific Relation. You should get a form similar to the one shown below.

In this form you simply need to choose a newly created relation as a relation template - that’s the only mandatory field.
You could also customize the representation type or a hotkey, although you would typically want to do that if you are

24 Chapter 1. Tutorial

Textinator, Release 1.0.0

re-using someone else’s relation.

1.6 [Part 6] Associating actions with your markers

Remember that in Textinator the definition of a markable is called Marker and the specific instantiation of a Marker
in a given text is called Label. Textinator provides a flexible way of associating a number of actions with each Label
by simply right clicking on them and getting a context menu with those actions (as shown on the screenshot below, for
instance).

Each of the green buttons in the context menu is an action, associated with the given Label (as defined for the given
Marker). Each action is an instantiation of one of the so called labeler plugins (read more about them in the developer
documentation). Currently, there are four such plugins available out of the box:

• A plugin adding a text field to a marker’s context menu, potentially shared between markers

• A plugin allowing to change a relationship of a label

• A plugin allowing to change a color of a label, potentially shared between labels

• A plugin adding a slider to a marker’s context menu

To add an action to any Marker, you need to navigate to the project page in the admin interface and open the Project-
specific markers tab. There you need to find the marker you want to add your actions to and find the Context menu
items subpane, as shown in the screenshot below.

1.6. [Part 6] Associating actions with your markers 25

Textinator, Release 1.0.0

Click on it to open the subpane and then click on Add another Context menu item button (as highlighted in red in the
screenshot below).

This should result in the form for adding a new context menu item.

26 Chapter 1. Tutorial

Textinator, Release 1.0.0

The form has the following fields to be filled in:

• marker action - one of the four aforementioned plugins;

• verbose name - the name of the context menu items, as will appear on one of the green context menu item buttons;

• field name in logs - the name of the fields in the extra dictionary when exported (by default the name of the
marker action itself);

• JSON configuration - the configuration for the plugin (as defined in the documentation page for each plugin);

1.6. [Part 6] Associating actions with your markers 27

Textinator, Release 1.0.0

1.7 [Part 7] Setting up human evaluation

Textinator also provides rich capabilities for conducting human evaluation about the textual data in the form of surveys.
In order to be able to work with surveys, you need to be a staff member and be added to the evaluation_managers group
(you can check that similar to the how you checked the project_managers group earlier in the tutorial).

You could add a Survey in a similar fashion to either a Dataset or a Project, as we did before (via Admin
panel/Surveys/Add survey). However, while the fields of the Survey creation form are self-explanatory, it can be tedious
to add, say 50 survey items manually, which is why Textinator offers an import function! You can access an import
function via Admin panel/Surveys as shown in the screenshot below.

An example of the required JSON format is given below (and more examples are available here).

{
"name": "name-of-your-survey",
"categories": [

"first-category",
"second-category"

],
"items": [
{
"question": "Sentence: Does it work?
Paraphrase: Would it work?",
"required": true,
"category": 1,
"extra": {
"model": "A"

},
"order": -1,
"answer_sets": [

{
"type": "radio",
"name": "criterion-1",
"choices": ["0", "1", "2"]

},
{
"type": "radio",
"name": "criterion-2",
"choices": ["0", "1", "2", "3"]

}
]

}
(continues on next page)

28 Chapter 1. Tutorial

https://github.com/dkalpakchi/django-scientific-survey/tree/master/example_surveys

Textinator, Release 1.0.0

(continued from previous page)

]
}

Each answer set should be one of the following types:

• “text” – provides a textarea for longer texts

• “short-text” – provides a regular HTML input for shorter texts

• “integer” – an HTML number input with only integers allowed

• “float” – an HTML number input with floats allowed

• “date” – a regular text input with date format validation

• “radio” – a radio button(s), with values specified in the “choices” argument

• “select” – a dropdown using an HTML <select> tag, with values specified in the “choices” argument

• “select-multiple” – a checkbox(es) with values specified in the “choices” argument

Note that the “choices” argument in each answer set affects the current answer set only if its type belongs to one of the
last three types from the list above.

After you have successfully imported a survey, you can access it via Surveys tab (marked with a red rectangle in the
screenshot below).

The tab should bring you to a separate Textinator Surveys page, which contains all currently available surveys.

Note that the page has no obvious links to Textinator, since the human judges might be recruited via the crowdsourcing
platform and we wanted to skip the whole registration-login workflow for Textinator. To enable that, there is a possibility
to turn off the authentication requirement by simply ticking off the necessary checkbox in the settings for your Survey
via Admin panel/Surveys (marked with a red rectangle in the screenshot below).

1.7. [Part 7] Setting up human evaluation 29

Textinator, Release 1.0.0

There is also a possibility to integrate the survey with crowdsourcing platforms requiring a redirect link after finishing
the survey (e.g., Prolific). The redirect link could be specified under the External redirect field in the screenshot above.

After being done with configuration, the human judges can start taking your survey, one example of which is shown
below. Have a great time running human evaluations!

30 Chapter 1. Tutorial

https://www.prolific.co/

CHAPTER

TWO

DEVELOPER DOCUMENTATION

2.1 Labeler Plugins API

Remember that in Textinator the definition of a markable is called Marker and the specific instantiation of a Marker
in a given text is called Label. Textinator provides a flexible way of associating a number of actions with each Label
by simply right clicking on them and getting a context menu with those actions (as shown on the screenshot below, for
instance).

Each of the green buttons in the context menu is a specific instantiation of a Textinator’s labeler plugin. There are four
plugins available out of the box:

• A plugin adding a text field to a marker’s context menu, potentially shared between markers

• A plugin allowing to change a relationship of a label

• A plugin allowing to change a color of a label, potentially shared between labels

• A plugin adding a slider to a marker’s context menu

For a more detailed guide on how to use these, please have a look at the tutorial about associating custom actions with
markers. However, if you know some JavaScript, you could add your own custom plugin as well, which is what this
page aims at documenting.

Each labeler plugin is just a JavaScript file residing in the folder static/scripts/labeler_plugins. If you want to add your
own plugin you just need to create a JS file in that directory (e.g. my_first_plugin.js). The created file should have the
following structure.

/**
* name: <your-plugin-name>
* description: <your-plugin-description>
* admin_filter: boolean
* author: <author-name>

(continues on next page)

31

Textinator, Release 1.0.0

(continued from previous page)

*/

var plugin = function(cfg, labeler) {
var config = {
name: "<your-plugin-name>",
verboseName: '<verbose-name>', // shown in the context menu
storeFor: "label", // one of "label", "relation"
dispatch: {}, // the map that triggers events after certain other␣

→˓events
subscribe: [], // the events triggering plugin's re-rendering
allowSingletons: false // signifies whether markables with no shared␣

→˓information should be allowed (only if storeFor: "relation")
}

// YOUR OWN PRIVATE FUNCTIONS

return {
name: config.name,
verboseName: config.verboseName,
storage: {},
dispatch: config.dispatch,
subscribe: config.subscribe,
storeFor: config.storeFor,
allowSingletons: config.allowSingletons,
isAllowed: function(obj) {
// YOUR CODE HERE

},
exec: function(label, menuItem) {
// YOUR CODE HERE

}
}

};

As you can see the plugin file contains just one object called plugin, which is a function. Notice the comment block
before the object definition, this is mandatory to have, since this helps Textinator to register the information about
your plugin in the database. The plugin object itself implements a revealing module pattern, i.e. being a function that
returns a JS object with a fixed number of properties, that can be considered public for this plugin. You can define any
helper functions you want, replacing the comment // YOUR OWN PRIVATE FUNCTIONS, since those won’t be visible
outside of the plugin.

The config object contains the default values for the configuration of each plugin. The fields shown in the example
file MUST be present, but you can include your own custom configuration fields to be used within exec function. The
mandatory fields are:

• name defines the name of the field associated with the plugin in the exported data and in the database

• verboseName defines the name to be displayed in the context menu

• storeFor defines the scope for the plugin storage, i.e. whether values in the storage should be per label or per
relation

• subscribe defines a list of JS events triggering when the plugin should be re-rendered

• dispatch defines a map of events triggering other events, note that for each key: value, key should
not be registered in subscribe, but value typically should, since typically it is desirable to trigger plu-
gin re-rendering. For instance, if the relation associated with the plugin has changed, Textinator triggers

32 Chapter 2. Developer Documentation

Textinator, Release 1.0.0

labeler_relationschange event, which could be captured by your plugin and trigger another event asso-
ciated with your plugin, e.g. my_custom_event, in which case you would need to specify "dispatch": {
"labeler_relationschange" : "my_custom_event" }.

• allowSingletons will take effect only if storeFor equals "relation" and signifies then whether the plugin
should get initialized for the markables that are not in anyr elations, a.k.a. singletons.

After defining the plugin, you will need to restart Textinator for your plugin to get registered. It will then be available
for every Marker as a context menu item. Then for each Label of a Marker with a context menu items, all items will
be initialized and renderd using the following procedure:

1. Check if a plugin is allowed for the given Label by calling isAllowed(label) for this plugin and the label in
question.

2. If allowed:

a) Run the plugin’s exec(label, menuItem), where menuItem is the context menu button for this
plugin and label.

b) For all events in the plugin’s subscribe, register an event listener, triggering plugin’s re-rendering
(consisting of 1 and 2a).

2.1. Labeler Plugins API 33

Textinator, Release 1.0.0

34 Chapter 2. Developer Documentation

CHAPTER

THREE

API

3.1 Models

class projects.models.Batch(*args, **kwargs)
Each time an annotator submits any annotation(s), an annotation batch is created for this annotator and a unique
UUID is assigned tot his batch.

All annotated Markers (instantiated as either Inputs or Labels) and Relations (instantiated as LabelRelations) are
then binded to this batch.

Parameters

• id (AutoField) – Id

• revision_of_id (ForeignKey to Batch) – Revision of

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• uuid (UUIDField) – Uuid

• user_id (ForeignKey to User) – User

• is_flagged (BooleanField) – Indicates whether the annotator has flagged the batch as
having problems

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.CommonModel(*args, **kwargs)
Abstract model containing the fields for creation and update dates, as well as a stub for to_json method.

Parameters

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

35

Textinator, Release 1.0.0

class projects.models.Context(*args, **kwargs)
An instantiation of a textual context that is currently annotated. This is stored specifically in Textinator to avoid
the loss of annotations if something should happen to the original data sources.

We do specify which data source a context is from, so it could be deleted, should the need arise. However, it is
not deleted automatically on deletion of the data source, again, to prevent the loss of annotations in case the data
source deletion was accidental.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• datasource_id (ForeignKey to DataSource) – Datasource

• datapoint (CharField) – As stored in the original dataset

• content (TextField) – Content

exception DoesNotExist

exception MultipleObjectsReturned

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class projects.models.DataAccessLog(*args, **kwargs)
Holds data access logs for each annotator per project. We keep track of:

• which datapoint and of which data source was accessed and when

• whether at least one annotation was submitted for that datapoint

• whether the datapoint was skipped without annotation (i.e., a new text was requested)

• whether the user flagged anything related to this datapoint (e.g., problems with text)

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• user_id (ForeignKey to User) – User

• project_id (ForeignKey to Project) – Project

• datasource_id (ForeignKey to DataSource) – Datasource

• datapoint (IntegerField) – As ordered in the original dataset

• flags (JSONField) – Additional information provided by the annotator

• is_submitted (BooleanField) – Indicates whether the datapoint was successfully sub-
mitted by an annotator

• is_skipped (BooleanField) – Indicates whether the datapoint was skipped by an anno-
tator

36 Chapter 3. API

Textinator, Release 1.0.0

• is_delayed (BooleanField) – Indicates whether the datapoint for skipped and saved for
later by an annotator

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.DataSource(*args, **kwargs)
Holds a definition of a datasource. Currently we support 4 source_types:

• plain text – input text directly in the admin interface (mostly for testing)

• plain text files – a bunch of files hosted on the same server as Textinator

• JSON files – a bunchf of JSON files hosted on the same server as Textinator

• Texts API – a REST API that will be used for getting each datapoint (the endpoint should be specified)

Texts API specification is available in the example_texts_api folder of the GitHub repository.

DataSource specifies 3 different formattings:

• plain text (without line breaks or tabs preserved)

• formatted text (with line breaks and tabs preserved)

• markdown

By default each DataSource is private, unless is_public switch is on.

owner of the DataSource is set automatically and is nullable. The reason behind allowing NULL values is that
the data might be owned by the institution, not by the user and might also have projects connected to it. If people
want their datasource deleted together with their user account, they need to request a manual deletion.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• name (CharField) – Dataset name

• source_type (CharField) – Dataset type

• spec (TextField) – in a JSON format

• language (CharField) – Language of this data source

• formatting (CharField) – text formating of the data source

• is_public (BooleanField) – Whether to make data source available to other Textinator
users

• owner_id (ForeignKey to User) – Owner

• post_processing_methods (ManyToManyField) – Post-processing methods

exception DoesNotExist

exception MultipleObjectsReturned

3.1. Models 37

Textinator, Release 1.0.0

class projects.models.Input(*args, **kwargs)
Holds an instantiation of a Marker that does not require specifying the start-end boundaries of the text. This
mostly concerns the cases when a user provides an input via HTML <input> tag.

Specifically this concerns MarkerVariants with the following annotation types:

• short (long) free-text input

• integer

• floating-point number

• range

group_order field specifies the order of the marker group that this MarkerVariant belongs to in the MarkerUnit
(if such unit was defined) at submission time. To exemplify, let’s say there is a definition of a MarkerUnit that
consists of 3 to 5 marker groups, each of which has:

• Question marker (Q)

• Correct answer marker (C)

In the UI, the annotator will then see the following:

[(Q, C)+, (Q, C)+, (Q, C)+, (Q, C), (Q, C)]

The groups with a (+) are mandatory for submission (since a unit should hold at least 3 groups by a specifica-
tion). group_order is meaningfull only if the annotator is allowed to rank the groups within a unit. If so, then
group_order specifies the order of each (Q, C) group after ranking at submission time.

Parameters

• id (AutoField) – Id

• revision_of_id (ForeignKey to Input) – Revision of

• group_order (PositiveIntegerField) – At the submission time

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• content (TextField) – Content

• marker_id (ForeignKey to MarkerVariant) – Marker

• context_id (ForeignKey to Context) – Context

• batch_id (ForeignKey to Batch) – Batch

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.Label(*args, **kwargs)
Holds an instantiation of a Marker that requires specifying the start-end boundaries of the text or is NOT
provided via HTML <input> tag.

Specifically this concerns MarkerVariants with the following annotation types:

• marker (text spans)

• marker (whole text)

extra holds extra information associated with the annotation at submission time. This extra information is typi-
cally via marker actions (i.e., right-clicking a marker).

The meaning of group_order is exactly the same as for Input.

38 Chapter 3. API

Textinator, Release 1.0.0

Parameters

• id (AutoField) – Id

• revision_of_id (ForeignKey to Label) – Revision of

• group_order (PositiveIntegerField) – At the submission time

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• start (PositiveIntegerField) – Character-wise start position in the text

• end (PositiveIntegerField) – Character-wise end position in the text

• marker_id (ForeignKey to MarkerVariant) – Marker

• extra (JSONField) – in a JSON format

• context_id (ForeignKey to Context) – Context

• undone (BooleanField) – Indicates whether the annotator used ‘Undo’ button

• batch_id (ForeignKey to Batch) – Batch

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.LabelRelation(*args, **kwargs)
Holds an instantiation of a Relation.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• rule_id (ForeignKey to RelationVariant) – Rule

• first_label_id (ForeignKey to Label) – First label

• second_label_id (ForeignKey to Label) – Second label

• undone (BooleanField) – Indicates whether the annotator used ‘Undo’ button

• batch_id (ForeignKey to Batch) – Batch

• cluster (PositiveIntegerField) – At the submission time

• extra (JSONField) – in a JSON format

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.Marker(*args, **kwargs)
Holds the definition for each unit of annotation in Textinator, called Marker. We create each Marker only when
creating a new project and can re-use Markers between the projects (all Markers are available to all users).

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

3.1. Models 39

Textinator, Release 1.0.0

• dt_updated (DateTimeField) – Autofilled

• name (CharField) – The display name of the marker (max 50 characters)

• name_en (TranslationCharField) – The display name of the marker (max 50 characters)

• name_nl (TranslationCharField) – The display name of the marker (max 50 characters)

• name_ru (TranslationCharField) – The display name of the marker (max 50 characters)

• name_es (TranslationCharField) – The display name of the marker (max 50 characters)

• name_sv (TranslationCharField) – The display name of the marker (max 50 characters)

• name_uk (TranslationCharField) – The display name of the marker (max 50 characters)

• code (CharField) – Marker’s nickname used internally

• color (ColorField) – Color for the annotated text span

• shortcut (CharField) – Keyboard shortcut for annotating a piece of text with this marker

• suggestion_endpoint (URLField) – Endpoint for the Suggestions API

exception DoesNotExist

exception MultipleObjectsReturned

clean_fields(exclude=None)
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.

get_deferred_fields()

Return a set containing names of deferred fields for this instance.

is_part_of_relation()

Check whether a given marker is part of definition for any Relation

refresh_from_db(using=None, fields=None)
Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if
this instance wasn’t loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If
fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class projects.models.MarkerAction(*args, **kwargs)
Specifies an action that shows up after right-clicking the marker. Each action is implemented as a JavaScript
plugin that should exist in static/scripts/labeler_plugins folder along with a specification of how to implement
your own plugins if necessary.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

40 Chapter 3. API

Textinator, Release 1.0.0

• name (CharField) – Name

• description (TextField) – Description

• file (CharField) – a name of the JS plugin file in the /static/scripts/labeler_plugins di-
rectory

• admin_filter (CharField) – Specifies the filter type in the data explorer interface (one
of ‘boolean’, ‘range’). If empty, then this action will be excluded from data explorer.

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.MarkerContextMenuItem(*args, **kwargs)
An M2M model binding MarkerAction and MarkerVariant and holding additional information.

• config holds a JSON configuration, specified in the JS plugin file for this action.
By storing it here, we allow each config to be customized specifically for each MarkerVariant-
MarkerAction binding.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• action_id (ForeignKey to MarkerAction) – Marker action

• marker_id (ForeignKey to MarkerVariant) – Marker

• verbose (CharField) – Verbose name

• verbose_admin (CharField) – Verbose name in data explorer

• field (CharField) – If applicable

• config (JSONField) – Json configuration

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.MarkerPair(*args, **kwargs)
Holds a pair of markers and is used to define (constrain) the relations. For example, if the relation Refers to holds
between Antecedent and Reference, then a marker pair of Antecedent and Reference will be created and assigned
to that relation definition.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• first_id (ForeignKey to Marker) – First

• second_id (ForeignKey to Marker) – Second

exception DoesNotExist

3.1. Models 41

Textinator, Release 1.0.0

exception MultipleObjectsReturned

class projects.models.MarkerRestriction(*args, **kwargs)
Holds a definition of a count restriction that is placed on a MarkerVariant

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• variant_id (ForeignKey to MarkerVariant) – Marker variant

• kind (CharField) – Restriction kind

• value (PositiveIntegerField) – e.g., if restriction kind is ‘<=’ and value is ‘3’, this
creates a restriction ‘<= 3’

• is_ignorable (BooleanField) – whether the restriction can be ignored at the discretion
of the annotator

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.MarkerUnit(*args, **kwargs)
Some annotation tasks might benefit from annotating groups of markers as one unit. This model stores the
definitions of such units (shared across all users).

The unit configuration has two dimensions: - marker group, which is defined by a one-to-many relationship with
MarkerVariant model - unit height, which provides minimum and maximum number of marker groups in this
unit

minimum_required attribute defines a lower bound for a unit height, whereas size defines an upper bound.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• size (PositiveIntegerField) – Default (and maximal) number of marker groups in the
unit

• minimum_required (PositiveIntegerField) – Minimum required number of marker
groups in the unit (can’t be more than size)

• is_rankable (BooleanField) – Whether annotators should be allowed to rank marker
groups in the unit

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.MarkerVariant(*args, **kwargs)
Holds a project-specific definition for a previously defined Marker. This model allows the project manager to
customize a previously defined marker by:

• specifying different color or hotkey

• changing the annotation type of the marker (defined in settings.ANNOTATION_TYPES)

42 Chapter 3. API

Textinator, Release 1.0.0

• assigning a marker to a unit

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• project_id (ForeignKey to Project) – Project

• marker_id (ForeignKey to Marker) – Marker template

• nrange_id (ForeignKey to Range) – Applicable only if the annotation types are ‘integer’,
‘floating-point number’ or ‘range’. If the annotation type is ‘range’ and no numeric range is
specified, the input will range from 0 to 100 by default. The values will remain unrestricted
for ‘integer’ or ‘floating-point number’ types.

• unit_id (ForeignKey to MarkerUnit) – Marker unit

• order_in_unit (PositiveIntegerField) – Order of this marker in the unit

• are_suggestions_enabled (BooleanField) – Indicates whether Suggestions API
should be enabled for this marker (if endpoint is specified)

• custom_suggestion_endpoint (URLField) – Custom endpoint for the Suggestions API
(by default the one from the marker template is used). Activates only if suggestions are
enabled.

• custom_color (ColorField) – Customized color for the annotated text span (color of the
marker template by default)

• custom_shortcut (CharField) – Keyboard shortcut for annotating a piece of text with
this marker (shortcut of the marker template by default

• anno_type (CharField) – The type of annotations made using this marker

• display_type (CharField) – Only applicable if annotation type is Marker (text spans)

• display_tab (CharField) – A name of the tab to which this marker belongs (leave empty
if you don’t want to have any tabs)

• export_name (CharField) – The name of the field in the exported JSON file (English
name by default)

• choices (JSONField) – Valid only if annotation type is radio buttons or checkboxes. Up
to 2 levels of nesting allowed (more than 2 is impractical for the annotator)

• actions (ManyToManyField) – Actions associated with this marker

exception DoesNotExist

exception MultipleObjectsReturned

get_count_restrictions(stringify=True)
Get the restrictions (if any) on the number of markers per submitted instance

Args:
stringify (bool, optional): Whether to return the restrictions in a string format

Returns:
(str or list): Restrictions on the number of markers per submitted instance

3.1. Models 43

Textinator, Release 1.0.0

max()

Returns:
int: The maximal number of markers of this kind per submitted instance

min()

Returns:
int: The minimal number of markers of this kind per submitted instance

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class projects.models.PostProcessingMethod(*args, **kwargs)
Holds function names to the post-processing methods that can be applied directly to textual data. Eligible meth-
ods are currently being pulled from projects/helpers.py, which is not a very elegant solution.

NOTE: this functionality is currently inactive and is a candidate for removal/overhaul in future releases.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• name (CharField) – Verbose name

• helper (CharField) – Name as specified in projects/helpers.py

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.PreMarker(*args, **kwargs)
Static pre-markers to be automatically created before the annotation of a specific text begun.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• project_id (ForeignKey to Project) – Project

• marker_id (ForeignKey to MarkerVariant) – Marker

• tokens (TextField) – Comma-separated tokens that should be highlighted with a marker

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.Project(*args, **kwargs)
Holds a definition of each Textinator project.

Parameters

• id (AutoField) – Id

44 Chapter 3. API

Textinator, Release 1.0.0

• dt_created (DateTimeField) – Autofilled

• title (CharField) – Title

• short_description (TextField) – Will be displayed on the project card

• institution (CharField) – Institution responsible for the project

• supported_by (CharField) – The name of the organization supporting the project finan-
cially (if applicable)

• guidelines (HTMLField) – Guidelines for the annotation task

• reminders (HTMLField) – Reminders for essential parts of guidelines (keep them short and
on point)

• temporary_message (HTMLField) – A temporary message for urgent communication with
annotators (e.g., about maintenance work)

• data_order (CharField) – In what order should the data be presented?

• disjoint_annotation (BooleanField) – Should each annotator work with their own
part of data?

• show_datasource_identifiers (BooleanField) – Should data source identifiers be
shown?

• task_type (CharField) – Type of the annotation task

• dt_publish (DateTimeField) – Publishing date

• dt_finish (DateTimeField) – Expiration date

• dt_updated (DateTimeField) – Updated at

• author_id (ForeignKey to User) – Author

• is_open (BooleanField) – Should the project be public?

• is_peer_reviewed (BooleanField) – Should the annotations be peer reviewed?

• allow_selecting_labels (BooleanField) – Should selecting the labels be allowed?

• disable_submitted_labels (BooleanField) – Should submitted labels be disabled?

• auto_text_switch (BooleanField) – Automatic mode involves showing a new text on
page refresh if at least one annotation was made on it (default). If this setting is turned off,
the annotator only gets a new text when they choose to click on the ‘Get new text’ button.

• max_markers_per_input (PositiveIntegerField) – Maximal number of markers per
input

• has_intro_tour (BooleanField) – WARNING: Intro tours are currently in beta

• language (CharField) – Language of this project

• thumbnail (ImageField) – A thumbnail of your project (ignored if not provided)

• video_summary (FileBrowseField) – Video introducing people to the annotation task at
hand (if applicable)

• video_remote (URLField) – A URL for video summary to be embedded (e.g. from
YouTube)

• modal_configs (JSONField) – JSON configuration for the modal windows in the project.
Currently available keys for modals are: ‘flagged’

3.1. Models 45

Textinator, Release 1.0.0

• editing_title_regex (TextField) – The regular expression to be used for searching the
annotated texts and using the first found result as a title of the batches to be edited

• allow_editing (BooleanField) – Should editing of own annotations be allowed?

• editing_as_revision (BooleanField) – By default editing happens directly in the an-
notated objects. If this setting is turned on, the original objects will remain intact and separate
reivison objects will be created

• allow_reviewing (BooleanField) – Should peer reviewing be enabled?

• collaborators (ManyToManyField) – Collaborators

• participants (ManyToManyField) – Participants

• markers (ManyToManyField) – Project-specific markers

• relations (ManyToManyField) – Project-specific relations

• datasources (ManyToManyField) – All data sources must be of the same language as the
project

exception DoesNotExist

exception MultipleObjectsReturned

data(user, force_switch=False)
Main method for getting data from the data sources and keeping track of who should annotate what.

The method proceeds as follows:

• If the annotator has previously requested a datapoint, but neither did any annotation, nor requested a
new one, show the very same datapoint again. Otherwise, proceed.

• If the annotator did some annotation and the auto text switch is off, show the very same text again.
Otherwise, proceed

• If sampling with replacement is turned off, exclude the previously annotated data.

• If disjoint annotation is turned on, then all previously annotated datapoints (by anyone) should be
excluded, so that the sets of annotations for each annotator are disjoint.

• If disjoint annotation is off, then exclude only data previously annotated by the current user.

• Instantiate all datasources associated with this project

• Choose an unannotated datapoint uniformly at random across all datasources and return it.

Args:
user (User): Current user

Returns:
DatapointInfo: The instance holding the information about the datapoint to be annotated

free_markers(intelligent_groups=False)

Returns:
QuerySet: The set of marker variants that do NOT belong to marker unit (order by annotation type)

is_ordered(parallel='*')
Check if the data order is static

Args:

46 Chapter 3. API

Textinator, Release 1.0.0

parallel (str or bool, optional): indicates whether to check if the dataset order is parallel (True)
or sequential (False)

or that the exact order is not important is not important (‘*’, by default)

Returns:
bool: Indicator of whether the data is to be presented in a specified (optionally, with sequential or
parallel dataset order)

is_sampled(replacement='*')
Check if the data order is randomly sampled

Args:

replacement (str or bool, optional): indicates whether to the check if sampling with
replacement (True) or not (False)

or that the kind is not important (‘*’, by default)

Returns:
bool: Indicator of whether the data is to be sampled (optionally, with or without replacement)

property marker_groups

Returns:
QuerySet: The set of marker variants that belong to marker unit (order by annotation type)

class projects.models.Range(*args, **kwargs)
Holds a definition for a numeric range, stores min, max and step (similar to Python’s range). Currently this is
used for specifying the possible numeric ranges for marker variants of types ‘integer’, ‘floating-point value’ and
‘range’.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• min_value (FloatField) – Minimal value

• max_value (FloatField) – Maximal value

• step (FloatField) – Step

exception DoesNotExist

exception MultipleObjectsReturned

clean()

Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field;
it will have a special-case association with the field defined by NON_FIELD_ERRORS.

class projects.models.Relation(*args, **kwargs)
Holds a definition of a relation in Textinator. We create each Relation only when creating a new project and can
re-use Relations between the projects (all Relations are available to all users).

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

3.1. Models 47

Textinator, Release 1.0.0

• name (CharField) – Name

• name_en (TranslationCharField) – Name [en]

• name_nl (TranslationCharField) – Name [nl]

• name_ru (TranslationCharField) – Name [ru]

• name_es (TranslationCharField) – Name [es]

• name_sv (TranslationCharField) – Name [sv]

• name_uk (TranslationCharField) – Name [uk]

• direction (CharField) – Direction

• shortcut (CharField) – Keyboard shortcut for marking a piece of text with this relation

• representation (CharField) – How should the relation be visualized?

• pairs (ManyToManyField) – Marker pairs

exception DoesNotExist

exception MultipleObjectsReturned

property between

Returns:
str: The string representation of the pairs of markers for which the relation can be annotated.

clean_fields(exclude=None)
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.

get_deferred_fields()

Return a set containing names of deferred fields for this instance.

refresh_from_db(using=None, fields=None)
Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if
this instance wasn’t loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If
fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

class projects.models.RelationVariant(*args, **kwargs)
Holds a project-specific definition for a previously defined Relation. This model allows the project manager to
customize a previously defined relation by:

• specifying different hotkey

• specifying a different visual representation (i.e., graph or list)

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• project_id (ForeignKey to Project) – Project

48 Chapter 3. API

Textinator, Release 1.0.0

• relation_id (ForeignKey to Relation) – Relation template

• custom_shortcut (CharField) – Keyboard shortcut for marking a piece of text with this
relation (shortcut of the relation template by default)

• custom_representation (CharField) – How should the relation be visualized? (repre-
sentation of the relation template by default)

exception DoesNotExist

exception MultipleObjectsReturned

property between

Returns:
str: The string representation of the pairs of markers for which the relation can be annotated.

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

class projects.models.TaskTypeSpecification(*args, **kwargs)
Holds a specification for an annotation task type and is used when a project of the pre-defined annotation type is
instantiated. The specification describes markers and relations that are to be used for this annotation task.

Default specifications are created during the first startup of the server and can be found in the task_defaults.json

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• task_type (CharField) – Type of the annotation task

• config (JSONField) – Json configuration

exception DoesNotExist

exception MultipleObjectsReturned

class projects.models.UserProfile(*args, **kwargs)
An M2M model binding User and Project and holding additional information

NOTE: the additional information is currently not in use and is a candidate for removal/overhaul in future re-
leases.

Parameters

• id (AutoField) – Id

• dt_created (DateTimeField) – Autofilled

• dt_updated (DateTimeField) – Autofilled

• user_id (ForeignKey to User) – User

• project_id (ForeignKey to Project) – Project

• allowed_reviewing (BooleanField) – Whether the annotator is allowed to review for
this project

3.1. Models 49

Textinator, Release 1.0.0

exception DoesNotExist

exception MultipleObjectsReturned

50 Chapter 3. API

PYTHON MODULE INDEX

p
projects.models, 35

51

Textinator, Release 1.0.0

52 Python Module Index

INDEX

B
Batch (class in projects.models), 35
Batch.DoesNotExist, 35
Batch.MultipleObjectsReturned, 35
between (projects.models.Relation property), 48
between (projects.models.RelationVariant property), 49

C
clean() (projects.models.Range method), 47
clean_fields() (projects.models.Marker method), 40
clean_fields() (projects.models.Relation method), 48
CommonModel (class in projects.models), 35
Context (class in projects.models), 35
Context.DoesNotExist, 36
Context.MultipleObjectsReturned, 36

D
data() (projects.models.Project method), 46
DataAccessLog (class in projects.models), 36
DataAccessLog.DoesNotExist, 37
DataAccessLog.MultipleObjectsReturned, 37
DataSource (class in projects.models), 37
DataSource.DoesNotExist, 37
DataSource.MultipleObjectsReturned, 37

F
free_markers() (projects.models.Project method), 46

G
get_count_restrictions()

(projects.models.MarkerVariant method),
43

get_deferred_fields() (projects.models.Marker
method), 40

get_deferred_fields() (projects.models.Relation
method), 48

I
Input (class in projects.models), 37
Input.DoesNotExist, 38
Input.MultipleObjectsReturned, 38

is_ordered() (projects.models.Project method), 46
is_part_of_relation() (projects.models.Marker

method), 40
is_sampled() (projects.models.Project method), 47

L
Label (class in projects.models), 38
Label.DoesNotExist, 39
Label.MultipleObjectsReturned, 39
LabelRelation (class in projects.models), 39
LabelRelation.DoesNotExist, 39
LabelRelation.MultipleObjectsReturned, 39

M
Marker (class in projects.models), 39
Marker.DoesNotExist, 40
Marker.MultipleObjectsReturned, 40
marker_groups (projects.models.Project property), 47
MarkerAction (class in projects.models), 40
MarkerAction.DoesNotExist, 41
MarkerAction.MultipleObjectsReturned, 41
MarkerContextMenuItem (class in projects.models), 41
MarkerContextMenuItem.DoesNotExist, 41
MarkerContextMenuItem.MultipleObjectsReturned,

41
MarkerPair (class in projects.models), 41
MarkerPair.DoesNotExist, 41
MarkerPair.MultipleObjectsReturned, 41
MarkerRestriction (class in projects.models), 42
MarkerRestriction.DoesNotExist, 42
MarkerRestriction.MultipleObjectsReturned, 42
MarkerUnit (class in projects.models), 42
MarkerUnit.DoesNotExist, 42
MarkerUnit.MultipleObjectsReturned, 42
MarkerVariant (class in projects.models), 42
MarkerVariant.DoesNotExist, 43
MarkerVariant.MultipleObjectsReturned, 43
max() (projects.models.MarkerVariant method), 43
min() (projects.models.MarkerVariant method), 44
module

projects.models, 35

53

Textinator, Release 1.0.0

P
PostProcessingMethod (class in projects.models), 44
PostProcessingMethod.DoesNotExist, 44
PostProcessingMethod.MultipleObjectsReturned,

44
PreMarker (class in projects.models), 44
PreMarker.DoesNotExist, 44
PreMarker.MultipleObjectsReturned, 44
Project (class in projects.models), 44
Project.DoesNotExist, 46
Project.MultipleObjectsReturned, 46
projects.models

module, 35

R
Range (class in projects.models), 47
Range.DoesNotExist, 47
Range.MultipleObjectsReturned, 47
refresh_from_db() (projects.models.Marker method),

40
refresh_from_db() (projects.models.Relation

method), 48
Relation (class in projects.models), 47
Relation.DoesNotExist, 48
Relation.MultipleObjectsReturned, 48
RelationVariant (class in projects.models), 48
RelationVariant.DoesNotExist, 49
RelationVariant.MultipleObjectsReturned, 49

S
save() (projects.models.CommonModel method), 35
save() (projects.models.Context method), 36
save() (projects.models.Marker method), 40
save() (projects.models.MarkerVariant method), 44
save() (projects.models.RelationVariant method), 49

T
TaskTypeSpecification (class in projects.models), 49
TaskTypeSpecification.DoesNotExist, 49
TaskTypeSpecification.MultipleObjectsReturned,

49

U
UserProfile (class in projects.models), 49
UserProfile.DoesNotExist, 49
UserProfile.MultipleObjectsReturned, 50

54 Index

	Tutorial
	[Part 1] Exploring annotation tasks supported out-of-the-box
	Question Answering
	Question Answering with Ranking
	Multiple Choice Question Answering
	Multiple Choice Question Answering with Ranking
	Named Entity Recognition
	Pronoun Resolution
	Co-reference Chain Resolution
	Machine Translation

	[Part 2] Adding a new data source
	Which data source type should I choose?
	What server is compatible with Texts API?
	What if I really want to upload data via UI?

	[Part 3] Creating your first project
	[Part 4] Exploring a data explorer
	Annotation statistics & progress tracking
	Exporting annotations
	PDF time report

	[Part 5] Creating a custom annotation task
	Minor modifications to out-of-the-box task types
	Major modifications to out-of-the-box task types
	Defining custom markers
	Defining custom relations

	[Part 6] Associating actions with your markers
	[Part 7] Setting up human evaluation

	Developer Documentation
	Labeler Plugins API

	API
	Models

	Python Module Index
	Index

