

 [image: Textinator's logo]

1.0.0 documentation

Textinator is an open-source internationalized highly-customizable annotation and evaluation tool for Natural Language Processing (NLP) tasks. The tool offers a web interface with a user-friendly UI and supports a number of NLP tasks out-of-the-box:

	Question Answering

	Question Answering with Complexity Ranking

	Multiple Choice Question Answering

	Multiple Choice Question Answering with Complexity Ranking

	Named Entity Recognition

	Pronoun Resolution

	Co-reference Chain Resolution

	Machine Translation

Textinator is currently localized for 4 languages (presented in an alphabetical order):

	English

	Russian

	Swedish

	Ukrainian

We are constantly working to improve available localizations and extend them to new languages. If you are willing to help, please visit our Github repository.

Contents:

	Tutorial
	[Part 1] Exploring annotation tasks supported out-of-the-box

	[Part 2] Adding a new data source

	[Part 3] Creating your first project

	[Part 4] Exploring a data explorer

	[Part 5] Creating a custom annotation task

	[Part 6] Associating actions with your markers

	[Part 7] Setting up human evaluation

	Developer Documentation
	Labeler Plugins API

	API
	Models

Tutorial

Tutorial:

	[Part 1] Exploring annotation tasks supported out-of-the-box
	Question Answering

	Question Answering with Ranking

	Multiple Choice Question Answering

	Multiple Choice Question Answering with Ranking

	Named Entity Recognition

	Pronoun Resolution

	Co-reference Chain Resolution

	Machine Translation

	[Part 2] Adding a new data source
	Which data source type should I choose?

	What server is compatible with Texts API?

	What if I really want to upload data via UI?

	[Part 3] Creating your first project

	[Part 4] Exploring a data explorer
	Annotation statistics & progress tracking

	Exporting annotations

	PDF time report

	[Part 5] Creating a custom annotation task
	Minor modifications to out-of-the-box task types

	Major modifications to out-of-the-box task types

	Defining custom markers

	Defining custom relations

	[Part 6] Associating actions with your markers

	[Part 7] Setting up human evaluation

[Part 1] Exploring annotation tasks supported out-of-the-box

Currently Textinator supports 8 annotation tasks out-of-the-box. Note that although adding new markers to these default annotation tasks is possible, but data exporters might not support the added markers. Please consult the documentation for each annotation task separately on the the page about custom tasks. The information about how you can create a completely custom annotation task if you wish so, is available on the same page.

Table of Contents

	Question Answering

	Question Answering with Ranking

	Multiple Choice Question Answering

	Multiple Choice Question Answering with Ranking

	Named Entity Recognition

	Pronoun Resolution

	Co-reference Chain Resolution

	Machine Translation

Question Answering

[image: The screenshot of the UI for the Question Answering task]

Question Answering with Ranking

[image: The screenshot of the UI for the task of Question Answering with Ranking]

Multiple Choice Question Answering

[image: The screenshot of the UI for the Multiple Choice Question Answering task]

Multiple Choice Question Answering with Ranking

[image: The screenshot of the UI for the task of Multiple Choice Question Answering with Ranking]

Named Entity Recognition

[image: The screenshot of the UI for the task of Named Entity Recognition]

Pronoun Resolution

[image: The screenshot of the UI for the Pronoun Resolution task]

Co-reference Chain Resolution

[image: The screenshot of the UI for the Co-reference chain resolution task]

Machine Translation

[image: The screenshot of the UI for the Machine Translation task]

[Part 2] Adding a new data source

Table of Contents

	Which data source type should I choose?

	What server is compatible with Texts API?

	What if I really want to upload data via UI?

Data sources can only be added by staff members (check for the small cog near your user icon in the top right corner) that
have been assigned to the project_managers user group. You can check if you have been assigned to that user group by
clicking on Profile -> Settings, which should show the page, similar to the one on the screenshot below.

[image: The screenshot of the `Profile/Settings` page]
Check that the User details pane (marked by the right rectangle in the screenshot above) has project_managers in the list
of your user groups. If it doesn’t, please contact your system administrator to be added to that group.

After you have been added to the project_managers group, you can access the data source creation form in multiple ways:

	via Quick links pane on the Welcome page.
	[image: The screenshot of the first method]

	via Admin panel dashboard
	[image: The screenshot of the second method]

	via Admin panel/Data sources
	[image: The screenshot of the third method]

All of these methods will lead to exactly the same form, shown below.

[image: The screenshot of the form for adding a new data source]
The following fields are mandatory for creating a data source:

	name - the name of your dataset (max. 50 characters). Although there are no strict requirement on uniqueness,
make sure your name is unique enough, so that you can find your dataset when creating the project.

	type - currently Textinator supports 4 types of data sources:

	plain text – input text directly in the admin interface (mostly for testing)

	plain-text files – a bunch of files hosted on the same server as Textinator

	JSON files – a bunch of JSON files hosted on the same server as Textinator

	Texts API – a REST API that will be used for getting each datapoint (the endpoint should be specified)

	specification - a JSON-specification, dependent on type:

	for plain text type you just enter a number of textual snippets to be used as data for annotation;

	for plain-text files you need to specify files and/or folders containing your files
(see below on where these files/folders should be located);

	for JSON files you need to specify files and/or folders similar to plain-text files, but also a key
in the JSON object that will contain the text;

	for Texts API you need to specify only the endpoint to the server compatible with Texts API (see below).

	language - the language of the data

	formatting - formatting of the data, can be either plain text or formatted text (e.g., with tabs) or markdown.

Optional fields include:

	post-processing methods - any Python methods defined by your system administrator that can be used for cleaning
the data (e.g., remove Wikipedia’s infoboxes). Note that currently Textinator does NOT provide any such methods
by default, so talk to your system administrator if you need any such methods.

	is public? - by default all data sources are private and can be accessed via UI only by the person who created
the data source. If you want to make it accessible to all Textinator users, tick this option. Note, that all people
with access to your server will be able to access the underlying data (unless you use Texts API).

Which data source type should I choose?

If you want to do quick and dirty annotation test, say, to check how well the annotators understand the instructions,
you should use a plain text type and just copy-paste a couple of texts there. Recall that if your texts are pre-formatted
(e.g., with tabs) or contain markdown, you should specify the formatting type accordingly.

In all other circumstances we recommend using Texts API for multiple reasons:

	Limiting access to your data. If you use either Plain-text files or JSON files, they should be located on the very
same server as Textinator. So at the very least your system administrator will have access to your data. A good way to
avoid it is to setup your own server, compatible with Texts API (read below), so that you can have full control over
who has access to the data.

	Decoupling. Textinator is an annotation platform, not a data management platform.

	Flexibility. Data comes in all possible shapes and forms and it would be a very hard task to support various data sources.
For instance, some researchers might have data in MySQL or SQLite, others in MongoDB and others in ElasticSearch. Supporting
all of these inputs, some of which may change their APIs in future, is a mammoth task. Instead, people can implement their own
small REST APIs and just provide the endpoint to Textinator - much more flexible!

	Privacy considerations. If you want to annotate e-mails or SMS, then authors of the data might request deletion of their
data quoting laws such as GDPR in the European Union. Neither deleting only parts of the datasets nor anonymizing the data
is possible via Textinator.

	Disk space limitation. Textual datasets can get quite large (think Wikipedia), which will induce unnecessary overhead
on the machine running Textinator - we want to avoid that. Furthermore, as time passes, even smaller datasets in large
amounts may end up requiring unreasonable large amounts of space. At that point, one would need to set some kind of
expiration policy as to when data should be auto-removed along with reminders to the data owners… So I will just reiterate
Textinator is an annotation platform :)

The remaining two types of data sources (plain-text files and JSON files) are left for backward compatibility with
pre-release versions of Textinator. They allow you to upload your data directly to the server via the secure tool of your choice
(e.g., scp or rsync) to the data folder (Textinator/data by default). Then you can specify the paths to the files/folders
relative to this data folder, given that they are either plain-text or JSON files.

What server is compatible with Texts API?

Note

Requires programming skills.

Texts API is pretty simple and requires your server to support 4 GET requests:

GET /get_datapoint?key=your-key HTTP/1.1

Response

{
 "text": "text-for-your-key"
}

GET /get_random_datapoint HTTP/1.1

Response

{
 "key": "key-for-the-random-datapoint",
 "text": "text-for-the-key-above"
}

GET /size HTTP/1.1

Response

{
 "size": "size-of-your-dataset"
}

GET /get_source_name?key=your-key HTTP/1.1

Response

{
 "name": "source-name-for-the-datapoint-under-your-key"
}

A simple example Flask server is provided in the example_texts_api folder in the GitHub repository [https://github.com/dkalpakchi/Textinator/tree/master/example_texts_api].

What if I really want to upload data via UI?

Warning

This feature is subject to change or removal in future.

Currently there is no recommended way of uploading your files into Textinator. However, if you really insist, there is a temporary
workaround that has multiple limitations (introduced to discourage its usage):

	Your data will be accessible by all other staff members of Textinator. So this solution should only be used either if you are the only user of Textinator or there is an honor code in place.

	The upload size is limited to 20MB per file.

	You are still limited to either plain-text files or JSON files (that can contain plain text, preformatted text or markdown though).

In order to use this workaround, you need to ask your system administrator to add you to the file_managers user group.
Then you will see “FileBrowser” in the menu of the admin UI and will be able to access Textinator’s file browser. You will then
need to create a folder with the same name as your username and upload your files in that folder. If you place your files in
any other folder, they will NOT be seen by Textinator.

[Part 3] Creating your first project

After having created a data source, we can actually go ahead and create our first Textinator project. Similar to adding a new data source, there are 3 ways of accessing the project creation form.

	via Quick links pane on the Welcome page.
	[image: The screenshot of the first method]

	via Admin panel dashboard
	[image: The screenshot of the second method]

	via Admin panel/Projects
	[image: The screenshot of the third method]

All of these methods will lead to exactly the same form, shown below.

[image: The screenshot of the form for adding a new project]
The following fields are mandatory for creating a project:

	Generic tab
	
	title - the title of your project (max. 50 characters);

	language - the language of your project, needs to match the language of the data sources (is used to filter out only annotators who have indicated to be fluent in that language);

	short description - a short and concise description of your project (to be shown in the Project card);

	publishing date - date of publishing (important for projects, open to public, which is true by default);

	expiration date - last date when the annotations can still be performed.

	Task specification tab
	
	type of the annotation task - one of the 8 annotation tasks supported out of the box or Generic for your custom annotation tasks.

	Data tab
	
	data sources - the data to be annotated, needs to match the langauge of the project.

The following fields are optional and most of them are self-explanatory. We will highlight only those that relate to the mandatory fields.

	Task specification tab
	
	guidelines - the rich-text input for annotation guidelines, where you could give an elaborate description with examples (these guidelines will be accessible by annotators at all times as a modal window);

	reminders - the summary of essential points of the guidelines, visible at all times and cannot be hidden.

	Settings tab
	
	should the project be public? - a switch of whether the project should be open to public (then publishing date plays a vital role). If the switch is off, the users will not see the project

	should selecting the labels be allowed? - whether annotated spans of text should be clickable (essential that it is turned on if you have any relations, since this is how relations are annotated in the current version of Textinator)

After you have created the project it should appear under My projects tab in Textinator and have a card that has the following anatomy.

[image: Anatomy of the project card]
If you have added a summary video, it will appear between the project title and short description.

[Part 4] Exploring a data explorer

Table of Contents

	Annotation statistics & progress tracking

	Exporting annotations

	PDF time report

The role of data explorer is to provide you with administration capabilities, as well as give a birds-eye view of the annotated data.

Note

The data overview functionality is expected to broaden in Textinator v1.1

Annotation statistics & progress tracking

Textinator provides a birds-eye view of the annotated data and the annotation process. Speficially, it shows the distribution of lengths for each marker that is present in the project (the top left graph in the screenshot below).

[image: The screenshot of the data annotation statistics]
For administrative purposes, you can also track the timing per annotation for each annotator (top right graph), their annotation progress and how many texts they chose to skip (bottom left graph), as well the overall sizes of the data sources, as a reminder (bottom right graph). Note that the screenshot is taken from the real-world annotation project, so the names of the data sources and annotators are edited out for privacy reasons. On top of that if annotators flag any texts as problematic, you can also see their comments in the data explorer under the red pane called “Flagged texts” (see example in the screenshot below).

[image: The screenshot of the flagged datapoints]

Exporting annotations

Textinator exports data in a custom concise JSON format specifically designed for each annotation task, supported out of the box. You will get data exported in this format if you click on the green “Export to JSON” button (see screenshots in the previous section).

If you have done any customization to an out-of-the-box task, we recommend using a generic export functionality, featuring a generic export format (thus less concise), but including all of your annotation. You can use generic export by clicking the green “Export to JSON (generic)” button.

PDF time report

Textinator is also capable of generating a per-month time report per annotator. Note that this report can NOT be a ground for payments, since Textinator provides only an estimate of the spent time. For instance, the time needed for breaks or potential research connected to the annotation process should also be counted, but is not accounted for in Textinator’s report. The report should be mostly used as a sanity check and if the reported numbers and the real numbers differ by a substantial amount, it’s just a flag to the project manager that this should be investigated further.

[image: The screenshot of the PDF time report]

[Part 5] Creating a custom annotation task

Table of Contents

	Minor modifications to out-of-the-box task types

	Major modifications to out-of-the-box task types

	Defining custom markers

	Defining custom relations

Minor modifications to out-of-the-box task types

You can the following modifications to the out-of-the-box tasks without any ramifications to the data export:

	color of markers

	hotkeys for markers or relations

	changing visualization type for a relation (graph or list)

	adding custom restrictions on the number of markers (e.g., there should be at least 2 distractors per each submitted multiple choice question)

The changes of color and hotkeys for the markers can be done via the project’s form Project-specific markers tab (relevant fields are marked by a red rectangle in the screenshot below).

[image: The screenshot of the form for customizing a marker]
The changes of hotkeys and visualization type for the relations can be done via the project’s form Project-specific relations tab (relevant fields are marked by a red rectangle in the screenshot below).

[image: The screenshot of the form for customizing a relation]
Custom restrictions for the markers can be added via the Restrictions pane available at the bottom of each Marker’s form. For instance, the restriction of having at least 2 markers of such kind can be added as shown in the screenshot below.

[image: The screenshot of the form for customizing a marker]

Major modifications to out-of-the-box task types

Adding custom markers or relations to the out-of-the-box tasks is also possible, but current export functionality is configured to work only with the default markers/relations to give as consice JSON file as possible. Having said that, you could try to add markers/relations to your task and see if the default export functionality still works. If it doesn’t, you can use the generic export by clicking on the Export JSON (generic) button under Data explorer, which is guaranteed to contain all annotations, albeit in a somewhat longer format.

Defining custom markers

If you want to annotate a task currently unsupported by Textinator or make a major modification to an already existing task, you will have to define custom units of annotation. Textinator supports such customized definitions through Markers via Admin panel/Markers. You need just a couple of things to define a basic Marker:

	defining a marker name to be used when exporting data (mandatory);

	choose a color (mandatory);

	defining the translation of the marker name to the language (among supported by Textinator) that you are going to use for annotation (optional, but highly recommended);

	choose a shortcut for the marker (optional).

Let’s say we want the annotators to find and mark the main message of the text in Swedish, then filled-in Marker fields (corresponding to the properties listed above), would look like in the picture below.

[image: The screenshot of the form for defining a marker]
Now that we have defined a Marker, this definition will be accessible to all Textinator staff members. Now we need to add a marker following this definition to our project. In order to do that you should find the project of interest via Admin panel/Projects. Open the project and choose the tab called Project-specific markers and then click Add another Project-Specific Marker. You should get a form similar to the one shown below

[image: The screenshot of the "Project-specifc markers" tab after clicking "Add project-specific marker"]
Choose a Marker that you have defined before and define variant-specific properties:

	You need to specify the type of annotations that should be made with this marker in the project. For instance, in some cases, you want to mark the correct answer in the text, in which case you should select Marker (text spans) as your annotation type. If you do not want the correct answers to be in the text, you might want to give annotators the freedom of providing them as a text input, in which case select Short free-text input. If you want to perform text classification, you will need to select Marker (whole text). The other marker types are self-explanatory.

	If you want your marker to be annotated as a part of the unit, you will need to specify a marker unit. For instance, when creating multiple choice questions, consisting of a question, a correct answer and 3 distractors, then all of them would be considered a unit. In which case you will need to create a unit first (by clicking on the green “+” button below the Marker unit field) and then choosing one and same unit for all 3 markers (question, correct answer and distractor).

	If a marker belongs to a unit, you can also specify order of a marker in the unit by using Order in a unit field. For instance, if you want markers to appear in the order question - correct answer - distractor, then the Order in a unit field of the Question marker should have the value of 1, of the Correct answer marker - the value of 2 and of the Distractor marker - the value of 3.

	If you require a specific number of annotations to be made by a marker prior to the submission, you could defined that using the Restrictions pane. For instance, if you need your annotators to enter at least two distractors, you need to add a Restriction of the kind >= and the value of 2. Note that you can add a restriction only after you have saved your marker variant for the first time.

	If you wanted to define custom actions, available when right-clicking the marker, you could define them using Context menu items pane. Note that you can add a context menu item only after you have saved your marker variant for the first time. Also note that only actions previously defined by the system administrator can be used for context menu items.

In our example case, we want annotators to be able to enter main message as a free text and this is the only marker connected to it, so no units are required. We also do not need any restrictions or context menu items. Hence, the filled in form would look as below.

[image: The filled in marker variant form]

Defining custom relations

If you have more than one marker, then you might want to define custom relations between the markers. Textinator supports such customized definitions through Relations. You need just a couple of things to define a basic Relation:

	defining a relation name to be used when exporting data (mandatory);

	choose marker pairs, for which the relation is applicable (mandatory);

	choose the directionality of the relation (mandatory);

	choose graphical representation type, i.e., graph or list (mandatory);

	defining the translation of the relation name to the language (among supported by Textinator) that you are going to use for annotation (optional, but highly recommended);

	choose a shortcut for the relation (optional).

Let’s say we want the annotators to specify a supporting fact for each main message they find. Then we need to define another marker called Supporting fact (using the same procedure as before). Then we can define a relation Supports between the Supporting fact and Main message via Admin panel/Relations using the form below.

[image: The screenshot of the form for adding a new relation]
First you will need to define a marker pair of Main message and Supporting fact, which you can do by clicking on the green plus icon below the Marker pairs text field. This will bring the pop-up window, which would look as follows when filled in.

[image: The screenshot of the form for defining the pair of `Main message` and `Supporting fact`]
Afterwards, you should click on Save in the pop-up under Actions and the popup should close adding this pair to the Marker pairs field of the original relation. The completely filled-in form for the relation should look as shown below.

[image: The screenshot of the form for defining the `Supports` relation]
Now that we have defined a Relation, this definition will be accessible to all Textinator staff members. Now we need to add a relation following this definition to our project. In order to do that you should find the project of interest via Admin panel/Projects. Open the project and choose the tab called Project-specific relations and then click Add another Project-Specific Relation. You should get a form similar to the one shown below.

[image: The screenshot of the form for defining the `Project-specific relation`]
In this form you simply need to choose a newly created relation as a relation template - that’s the only mandatory field. You could also customize the representation type or a hotkey, although you would typically want to do that if you are re-using someone else’s relation.

[Part 6] Associating actions with your markers

Remember that in Textinator the definition of a markable is called Marker and the specific instantiation of a Marker in a given text is called Label. Textinator provides a flexible way of associating a number of actions with each Label by simply right clicking on them and getting a context menu with those actions (as shown on the screenshot below, for instance).

[image: The screenshot of a label's context menu]
Each of the green buttons in the context menu is an action, associated with the given Label (as defined for the given Marker). Each action is an instantiation of one of the so called labeler plugins (read more about them in the developer documentation). Currently, there are four such plugins available out of the box:

	A plugin adding a text field to a marker’s context menu, potentially shared between markers

	A plugin allowing to change a relationship of a label

	A plugin allowing to change a color of a label, potentially shared between labels

	A plugin adding a slider to a marker’s context menu

To add an action to any Marker, you need to navigate to the project page in the admin interface and open the Project-specific markers tab. There you need to find the marker you want to add your actions to and find the Context menu items subpane, as shown in the screenshot below.

[image: The screenshot showing `Context menu items` subpane]
Click on it to open the subpane and then click on Add another Context menu item button (as highlighted in red in the screenshot below).

[image: The screenshot showing `Add another Context menu item` button on the opened `Context menu items` subpane]
This should result in the form for adding a new context menu item.

[image: The screenshot of the form for adding a new context menu item]
The form has the following fields to be filled in:

	marker action - one of the four aforementioned plugins;

	verbose name - the name of the context menu items, as will appear on one of the green context menu item buttons;

	field name in logs - the name of the fields in the extra dictionary when exported (by default the name of the marker action itself);

	JSON configuration - the configuration for the plugin (as defined in the documentation page for each plugin);

[Part 7] Setting up human evaluation

Textinator also provides rich capabilities for conducting human evaluation about the textual data in the form of surveys. In order to be able to work with surveys, you need to be a staff member and be added to the evaluation_managers group (you can check that similar to the how you checked the project_managers group earlier in the tutorial).

You could add a Survey in a similar fashion to either a Dataset or a Project, as we did before (via Admin panel/Surveys/Add survey). However, while the fields of the Survey creation form are self-explanatory, it can be tedious to add, say 50 survey items manually, which is why Textinator offers an import function! You can access an import function via Admin panel/Surveys as shown in the screenshot below.

[image: The screenshot of the UI for the Question Answering task]
An example of the required JSON format is given below (and more examples are available here [https://github.com/dkalpakchi/django-scientific-survey/tree/master/example_surveys]).

{
 "name": "name-of-your-survey",
 "categories": [
 "first-category",
 "second-category"
],
 "items": [
 {
 "question": "Sentence: Does it work?
Paraphrase: Would it work?",
 "required": true,
 "category": 1,
 "extra": {
 "model": "A"
 },
 "order": -1,
 "answer_sets": [
 {
 "type": "radio",
 "name": "criterion-1",
 "choices": ["0", "1", "2"]
 },
 {
 "type": "radio",
 "name": "criterion-2",
 "choices": ["0", "1", "2", "3"]
 }
]
 }
]
}

Each answer set should be one of the following types:

	“text” – provides a textarea for longer texts

	“short-text” – provides a regular HTML input for shorter texts

	“integer” – an HTML number input with only integers allowed

	“float” – an HTML number input with floats allowed

	“date” – a regular text input with date format validation

	“radio” – a radio button(s), with values specified in the “choices” argument

	“select” – a dropdown using an HTML <select> tag, with values specified in the “choices” argument

	“select-multiple” – a checkbox(es) with values specified in the “choices” argument

Note that the “choices” argument in each answer set affects the current answer set only if its type belongs to one of the last three types from the list above.

After you have successfully imported a survey, you can access it via Surveys tab (marked with a red rectangle in the screenshot below).

[image: The screenshot of the UI for the Surveys tab]
The tab should bring you to a separate Textinator Surveys page, which contains all currently available surveys.

[image: The screenshot of the UI for the surveys listing page]
Note that the page has no obvious links to Textinator, since the human judges might be recruited via the crowdsourcing platform and we wanted to skip the whole registration-login workflow for Textinator. To enable that, there is a possibility to turn off the authentication requirement by simply ticking off the necessary checkbox in the settings for your Survey via Admin panel/Surveys (marked with a red rectangle in the screenshot below).

[image: The screenshot of the UI for the setting regarding authentification requirement.]
There is also a possibility to integrate the survey with crowdsourcing platforms requiring a redirect link after finishing the survey (e.g., Prolific [https://www.prolific.co/]). The redirect link could be specified under the External redirect field in the screenshot above.

After being done with configuration, the human judges can start taking your survey, one example of which is shown below. Have a great time running human evaluations!

[image: The screenshot of the UI for the example survey]

Developer Documentation

Developer Documentation:

	Labeler Plugins API

Labeler Plugins API

Remember that in Textinator the definition of a markable is called Marker and the specific instantiation of a Marker in a given text is called Label. Textinator provides a flexible way of associating a number of actions with each Label by simply right clicking on them and getting a context menu with those actions (as shown on the screenshot below, for instance).

[image: The screenshot of a label's context menu]
Each of the green buttons in the context menu is a specific instantiation of a Textinator’s labeler plugin. There are four plugins available out of the box:

	A plugin adding a text field to a marker’s context menu, potentially shared between markers

	A plugin allowing to change a relationship of a label

	A plugin allowing to change a color of a label, potentially shared between labels

	A plugin adding a slider to a marker’s context menu

For a more detailed guide on how to use these, please have a look at the tutorial about associating custom actions with markers. However, if you know some JavaScript, you could add your own custom plugin as well, which is what this page aims at documenting.

Each labeler plugin is just a JavaScript file residing in the folder static/scripts/labeler_plugins. If you want to add your own plugin you just need to create a JS file in that directory (e.g. my_first_plugin.js). The created file should have the following structure.

/**
 * name: <your-plugin-name>
 * description: <your-plugin-description>
 * admin_filter: boolean
 * author: <author-name>
 */

var plugin = function(cfg, labeler) {
 var config = {
 name: "<your-plugin-name>",
 verboseName: '<verbose-name>', // shown in the context menu
 storeFor: "label", // one of "label", "relation"
 dispatch: {}, // the map that triggers events after certain other events
 subscribe: [], // the events triggering plugin's re-rendering
 allowSingletons: false // signifies whether markables with no shared information should be allowed (only if storeFor: "relation")
 }

 // YOUR OWN PRIVATE FUNCTIONS

 return {
 name: config.name,
 verboseName: config.verboseName,
 storage: {},
 dispatch: config.dispatch,
 subscribe: config.subscribe,
 storeFor: config.storeFor,
 allowSingletons: config.allowSingletons,
 isAllowed: function(obj) {
 // YOUR CODE HERE
 },
 exec: function(label, menuItem) {
 // YOUR CODE HERE
 }
 }
};

As you can see the plugin file contains just one object called plugin, which is a function. Notice the comment block before the object definition, this is mandatory to have, since this helps Textinator to register the information about your plugin in the database. The plugin object itself implements a revealing module pattern, i.e. being a function that returns a JS object with a fixed number of properties, that can be considered public for this plugin. You can define any helper functions you want, replacing the comment // YOUR OWN PRIVATE FUNCTIONS, since those won’t be visible outside of the plugin.

The config object contains the default values for the configuration of each plugin. The fields shown in the example file MUST be present, but you can include your own custom configuration fields to be used within exec function. The mandatory fields are:

	name defines the name of the field associated with the plugin in the exported data and in the database

	verboseName defines the name to be displayed in the context menu

	storeFor defines the scope for the plugin storage, i.e. whether values in the storage should be per label or per relation

	subscribe defines a list of JS events triggering when the plugin should be re-rendered

	dispatch defines a map of events triggering other events, note that for each key: value, key should not be registered in subscribe, but value typically should, since typically it is desirable to trigger plugin re-rendering. For instance, if the relation associated with the plugin has changed, Textinator triggers labeler_relationschange event, which could be captured by your plugin and trigger another event associated with your plugin, e.g. my_custom_event, in which case you would need to specify "dispatch": { "labeler_relationschange" : "my_custom_event" }.

	allowSingletons will take effect only if storeFor equals "relation" and signifies then whether the plugin should get initialized for the markables that are not in anyr elations, a.k.a. singletons.

After defining the plugin, you will need to restart Textinator for your plugin to get registered. It will then be available for every Marker as a context menu item. Then for each Label of a Marker with a context menu items, all items will be initialized and renderd using the following procedure:

	Check if a plugin is allowed for the given Label by calling isAllowed(label) for this plugin and the label in question.

	
	If allowed:
	
	Run the plugin’s exec(label, menuItem), where menuItem is the context menu button for this plugin and label.

	For all events in the plugin’s subscribe, register an event listener, triggering plugin’s re-rendering (consisting of 1 and 2a).

API

API docs:

	Models
	Batch

	CommonModel

	Context

	DataAccessLog

	DataSource

	Input

	Label

	LabelRelation

	Marker

	MarkerAction

	MarkerContextMenuItem

	MarkerPair

	MarkerRestriction

	MarkerUnit

	MarkerVariant

	PostProcessingMethod

	PreMarker

	Project

	Range

	Relation

	RelationVariant

	TaskTypeSpecification

	UserProfile

Models

	
class projects.models.Batch(*args, **kwargs)

	Each time an annotator submits any annotation(s), an annotation batch is created
for this annotator and a unique UUID is assigned tot his batch.

All annotated Markers (instantiated as either Inputs or Labels) and Relations
(instantiated as LabelRelations) are then binded to this batch.

	Parameters

	
	id (AutoField) – Id

	revision_of_id (ForeignKey to Batch) – Revision of

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	uuid (UUIDField) – Uuid

	user_id (ForeignKey to User) – User

	is_flagged (BooleanField) – Indicates whether the annotator has flagged the batch as having problems

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.CommonModel(*args, **kwargs)

	Abstract model containing the fields for creation and update dates, as well as a stub for to_json method.

	Parameters

	
	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
class projects.models.Context(*args, **kwargs)

	An instantiation of a textual context that is currently annotated.
This is stored specifically in Textinator to avoid the loss of annotations
if something should happen to the original data sources.

We do specify which data source a context is from, so it could be deleted,
should the need arise. However, it is not deleted automatically on deletion
of the data source, again, to prevent the loss of annotations in case the
data source deletion was accidental.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	datasource_id (ForeignKey to DataSource) – Datasource

	datapoint (CharField) – As stored in the original dataset

	content (TextField) – Content

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
class projects.models.DataAccessLog(*args, **kwargs)

	Holds data access logs for each annotator per project. We keep track of:

	which datapoint and of which data source was accessed and when

	whether at least one annotation was submitted for that datapoint

	whether the datapoint was skipped without annotation (i.e., a new text was requested)

	whether the user flagged anything related to this datapoint (e.g., problems with text)

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	user_id (ForeignKey to User) – User

	project_id (ForeignKey to Project) – Project

	datasource_id (ForeignKey to DataSource) – Datasource

	datapoint (IntegerField) – As ordered in the original dataset

	flags (JSONField) – Additional information provided by the annotator

	is_submitted (BooleanField) – Indicates whether the datapoint was successfully submitted by an annotator

	is_skipped (BooleanField) – Indicates whether the datapoint was skipped by an annotator

	is_delayed (BooleanField) – Indicates whether the datapoint for skipped and saved for later by an annotator

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.DataSource(*args, **kwargs)

	Holds a definition of a datasource. Currently we support 4 source_types:

	plain text – input text directly in the admin interface (mostly for testing)

	plain text files – a bunch of files hosted on the same server as Textinator

	JSON files – a bunchf of JSON files hosted on the same server as Textinator

	Texts API – a REST API that will be used for getting each datapoint (the endpoint should be specified)

Texts API specification is available in the example_texts_api folder of the GitHub repository.

DataSource specifies 3 different formattings:

	plain text (without line breaks or tabs preserved)

	formatted text (with line breaks and tabs preserved)

	markdown

By default each DataSource is private, unless is_public switch is on.

owner of the DataSource is set automatically and is nullable.
The reason behind allowing NULL values is that the data might be owned by the institution,
not by the user and might also have projects connected to it.
If people want their datasource deleted together with their user account,
they need to request a manual deletion.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	name (CharField) – Dataset name

	source_type (CharField) – Dataset type

	spec (TextField) – in a JSON format

	language (CharField) – Language of this data source

	formatting (CharField) – text formating of the data source

	is_public (BooleanField) – Whether to make data source available to other Textinator users

	owner_id (ForeignKey to User) – Owner

	post_processing_methods (ManyToManyField) – Post-processing methods

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.Input(*args, **kwargs)

	Holds an instantiation of a Marker that does not require specifying the start-end boundaries
of the text. This mostly concerns the cases when a user provides an input via HTML <input> tag.

Specifically this concerns MarkerVariants with the following annotation types:

	short (long) free-text input

	integer

	floating-point number

	range

group_order field specifies the order of the marker group that this MarkerVariant belongs to
in the MarkerUnit (if such unit was defined) at submission time. To exemplify, let’s say there is
a definition of a MarkerUnit that consists of 3 to 5 marker groups, each of which has:

	Question marker (Q)

	Correct answer marker (C)

In the UI, the annotator will then see the following:

[(Q, C)+, (Q, C)+, (Q, C)+, (Q, C), (Q, C)]

The groups with a (+) are mandatory for submission (since a unit should hold at least 3 groups by a specification).
group_order is meaningfull only if the annotator is allowed to rank the groups within a unit.
If so, then group_order specifies the order of each (Q, C) group after ranking at submission time.

	Parameters

	
	id (AutoField) – Id

	revision_of_id (ForeignKey to Input) – Revision of

	group_order (PositiveIntegerField) – At the submission time

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	content (TextField) – Content

	marker_id (ForeignKey to MarkerVariant) – Marker

	context_id (ForeignKey to Context) – Context

	batch_id (ForeignKey to Batch) – Batch

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.Label(*args, **kwargs)

	Holds an instantiation of a Marker that requires specifying the start-end boundaries
of the text or is NOT provided via HTML <input> tag.

Specifically this concerns MarkerVariants with the following annotation types:

	marker (text spans)

	marker (whole text)

extra holds extra information associated with the annotation at submission time.
This extra information is typically via marker actions (i.e., right-clicking a marker).

The meaning of group_order is exactly the same as for Input.

	Parameters

	
	id (AutoField) – Id

	revision_of_id (ForeignKey to Label) – Revision of

	group_order (PositiveIntegerField) – At the submission time

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	start (PositiveIntegerField) – Character-wise start position in the text

	end (PositiveIntegerField) – Character-wise end position in the text

	marker_id (ForeignKey to MarkerVariant) – Marker

	extra (JSONField) – in a JSON format

	context_id (ForeignKey to Context) – Context

	undone (BooleanField) – Indicates whether the annotator used ‘Undo’ button

	batch_id (ForeignKey to Batch) – Batch

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.LabelRelation(*args, **kwargs)

	Holds an instantiation of a Relation.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	rule_id (ForeignKey to RelationVariant) – Rule

	first_label_id (ForeignKey to Label) – First label

	second_label_id (ForeignKey to Label) – Second label

	undone (BooleanField) – Indicates whether the annotator used ‘Undo’ button

	batch_id (ForeignKey to Batch) – Batch

	cluster (PositiveIntegerField) – At the submission time

	extra (JSONField) – in a JSON format

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.Marker(*args, **kwargs)

	Holds the definition for each unit of annotation in Textinator, called Marker.
We create each Marker only when creating a new project and can re-use Markers between the projects
(all Markers are available to all users).

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	name (CharField) – The display name of the marker (max 50 characters)

	name_en (TranslationCharField) – The display name of the marker (max 50 characters)

	name_nl (TranslationCharField) – The display name of the marker (max 50 characters)

	name_ru (TranslationCharField) – The display name of the marker (max 50 characters)

	name_es (TranslationCharField) – The display name of the marker (max 50 characters)

	name_sv (TranslationCharField) – The display name of the marker (max 50 characters)

	name_uk (TranslationCharField) – The display name of the marker (max 50 characters)

	code (CharField) – Marker’s nickname used internally

	color (ColorField) – Color for the annotated text span

	shortcut (CharField) – Keyboard shortcut for annotating a piece of text with this marker

	suggestion_endpoint (URLField) – Endpoint for the Suggestions API

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
clean_fields(exclude=None)

	Clean all fields and raise a ValidationError containing a dict
of all validation errors if any occur.

	
get_deferred_fields()

	Return a set containing names of deferred fields for this instance.

	
is_part_of_relation()

	Check whether a given marker is part of definition for any Relation

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
class projects.models.MarkerAction(*args, **kwargs)

	Specifies an action that shows up after right-clicking the marker.
Each action is implemented as a JavaScript plugin that should exist in static/scripts/labeler_plugins folder
along with a specification of how to implement your own plugins if necessary.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	name (CharField) – Name

	description (TextField) – Description

	file (CharField) – a name of the JS plugin file in the /static/scripts/labeler_plugins directory

	admin_filter (CharField) –
 Specifies the filter type in the data explorer interface (one of ‘boolean’, ‘range’).
 If empty, then this action will be excluded from data explorer.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.MarkerContextMenuItem(*args, **kwargs)

	An M2M model binding MarkerAction and MarkerVariant and holding additional information.

	
	config holds a JSON configuration, specified in the JS plugin file for this action.
	By storing it here, we allow each config to be customized specifically for each
MarkerVariant-MarkerAction binding.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	action_id (ForeignKey to MarkerAction) – Marker action

	marker_id (ForeignKey to MarkerVariant) – Marker

	verbose (CharField) – Verbose name

	verbose_admin (CharField) – Verbose name in data explorer

	field (CharField) – If applicable

	config (JSONField) – Json configuration

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.MarkerPair(*args, **kwargs)

	Holds a pair of markers and is used to define (constrain) the relations.
For example, if the relation Refers to holds between Antecedent and Reference,
then a marker pair of Antecedent and Reference will be created and assigned
to that relation definition.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	first_id (ForeignKey to Marker) – First

	second_id (ForeignKey to Marker) – Second

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.MarkerRestriction(*args, **kwargs)

	Holds a definition of a count restriction that is placed on a MarkerVariant

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	variant_id (ForeignKey to MarkerVariant) – Marker variant

	kind (CharField) – Restriction kind

	value (PositiveIntegerField) – e.g., if restriction kind is ‘<=’ and value is ‘3’, this creates a restriction ‘<= 3’

	is_ignorable (BooleanField) – whether the restriction can be ignored at the discretion of the annotator

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.MarkerUnit(*args, **kwargs)

	Some annotation tasks might benefit from annotating groups of markers as one unit.
This model stores the definitions of such units (shared across all users).

The unit configuration has two dimensions:
- marker group, which is defined by a one-to-many relationship with MarkerVariant model
- unit height, which provides minimum and maximum number of marker groups in this unit

minimum_required attribute defines a lower bound for a unit height, whereas size defines an upper bound.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	size (PositiveIntegerField) – Default (and maximal) number of marker groups in the unit

	minimum_required (PositiveIntegerField) – Minimum required number of marker groups in the unit (can’t be more than size)

	is_rankable (BooleanField) – Whether annotators should be allowed to rank marker groups in the unit

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.MarkerVariant(*args, **kwargs)

	Holds a project-specific definition for a previously defined Marker.
This model allows the project manager to customize a previously defined marker by:

	specifying different color or hotkey

	changing the annotation type of the marker (defined in settings.ANNOTATION_TYPES)

	assigning a marker to a unit

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	project_id (ForeignKey to Project) – Project

	marker_id (ForeignKey to Marker) – Marker template

	nrange_id (ForeignKey to Range) –
 Applicable only if the annotation types are ‘integer’, ‘floating-point number’ or ‘range’.
 If the annotation type is ‘range’ and no numeric range is specified, the input will range from 0 to 100 by default.
 The values will remain unrestricted for ‘integer’ or ‘floating-point number’ types.

	unit_id (ForeignKey to MarkerUnit) – Marker unit

	order_in_unit (PositiveIntegerField) – Order of this marker in the unit

	are_suggestions_enabled (BooleanField) – Indicates whether Suggestions API should be enabled for this marker (if endpoint is specified)

	custom_suggestion_endpoint (URLField) –
 Custom endpoint for the Suggestions API (by default the one from the marker template is used).
 Activates only if suggestions are enabled.

	custom_color (ColorField) – Customized color for the annotated text span (color of the marker template by default)

	custom_shortcut (CharField) – Keyboard shortcut for annotating a piece of text with this marker (shortcut of the marker template by default

	anno_type (CharField) – The type of annotations made using this marker

	display_type (CharField) – Only applicable if annotation type is Marker (text spans)

	display_tab (CharField) – A name of the tab to which this marker belongs (leave empty if you don’t want to have any tabs)

	export_name (CharField) – The name of the field in the exported JSON file (English name by default)

	choices (JSONField) – Valid only if annotation type is radio buttons or checkboxes. Up to 2 levels of nesting allowed (more than 2 is impractical for the annotator)

	actions (ManyToManyField) – Actions associated with this marker

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_count_restrictions(stringify=True)

	Get the restrictions (if any) on the number of markers per submitted instance

	Args:
	stringify (bool, optional): Whether to return the restrictions in a string format

	Returns:
	(str or list): Restrictions on the number of markers per submitted instance

	
max()

	
	Returns:
	int: The maximal number of markers of this kind per submitted instance

	
min()

	
	Returns:
	int: The minimal number of markers of this kind per submitted instance

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
class projects.models.PostProcessingMethod(*args, **kwargs)

	Holds function names to the post-processing methods that can be applied directly to textual data.
Eligible methods are currently being pulled from projects/helpers.py, which is not a very elegant solution.

NOTE: this functionality is currently inactive and is a candidate for removal/overhaul in future releases.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	name (CharField) – Verbose name

	helper (CharField) – Name as specified in projects/helpers.py

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.PreMarker(*args, **kwargs)

	Static pre-markers to be automatically created before the annotation of a specific text begun.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	project_id (ForeignKey to Project) – Project

	marker_id (ForeignKey to MarkerVariant) – Marker

	tokens (TextField) – Comma-separated tokens that should be highlighted with a marker

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.Project(*args, **kwargs)

	Holds a definition of each Textinator project.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	title (CharField) – Title

	short_description (TextField) – Will be displayed on the project card

	institution (CharField) – Institution responsible for the project

	supported_by (CharField) – The name of the organization supporting the project financially (if applicable)

	guidelines (HTMLField) – Guidelines for the annotation task

	reminders (HTMLField) – Reminders for essential parts of guidelines (keep them short and on point)

	temporary_message (HTMLField) – A temporary message for urgent communication with annotators (e.g., about maintenance work)

	data_order (CharField) – In what order should the data be presented?

	disjoint_annotation (BooleanField) – Should each annotator work with their own part of data?

	show_datasource_identifiers (BooleanField) – Should data source identifiers be shown?

	task_type (CharField) – Type of the annotation task

	dt_publish (DateTimeField) – Publishing date

	dt_finish (DateTimeField) – Expiration date

	dt_updated (DateTimeField) – Updated at

	author_id (ForeignKey to User) – Author

	is_open (BooleanField) – Should the project be public?

	is_peer_reviewed (BooleanField) – Should the annotations be peer reviewed?

	allow_selecting_labels (BooleanField) – Should selecting the labels be allowed?

	disable_submitted_labels (BooleanField) – Should submitted labels be disabled?

	auto_text_switch (BooleanField) – Automatic mode involves showing a new text on page refresh if at least one annotation was made on it (default).
 If this setting is turned off, the annotator only gets a new text when they choose to click on the ‘Get new text’ button.

	max_markers_per_input (PositiveIntegerField) – Maximal number of markers per input

	has_intro_tour (BooleanField) – WARNING: Intro tours are currently in beta

	language (CharField) – Language of this project

	thumbnail (ImageField) – A thumbnail of your project (ignored if not provided)

	video_summary (FileBrowseField) – Video introducing people to the annotation task at hand (if applicable)

	video_remote (URLField) – A URL for video summary to be embedded (e.g. from YouTube)

	modal_configs (JSONField) – JSON configuration for the modal windows in the project. Currently available keys for modals are: ‘flagged’

	editing_title_regex (TextField) – The regular expression to be used for searching the annotated texts and using the first found result as a title of the batches to be edited

	allow_editing (BooleanField) – Should editing of own annotations be allowed?

	editing_as_revision (BooleanField) –
 By default editing happens directly in the annotated objects. If this setting is turned on,
 the original objects will remain intact and separate reivison objects will be created

	allow_reviewing (BooleanField) – Should peer reviewing be enabled?

	collaborators (ManyToManyField) – Collaborators

	participants (ManyToManyField) – Participants

	markers (ManyToManyField) – Project-specific markers

	relations (ManyToManyField) – Project-specific relations

	datasources (ManyToManyField) – All data sources must be of the same language as the project

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
data(user, force_switch=False)

	Main method for getting data from the data sources and keeping track of who should annotate what.

The method proceeds as follows:

	If the annotator has previously requested a datapoint, but neither did any annotation, nor requested a new one,
show the very same datapoint again. Otherwise, proceed.

	If the annotator did some annotation and the auto text switch is off, show the very same text again. Otherwise, proceed

	If sampling with replacement is turned off, exclude the previously annotated data.

	If disjoint annotation is turned on, then all previously annotated datapoints (by anyone) should be excluded,
so that the sets of annotations for each annotator are disjoint.

	If disjoint annotation is off, then exclude only data previously annotated by the current user.

	Instantiate all datasources associated with this project

	Choose an unannotated datapoint uniformly at random across all datasources and return it.

	Args:
	user (User): Current user

	Returns:
	DatapointInfo: The instance holding the information about the datapoint to be annotated

	
free_markers(intelligent_groups=False)

	
	Returns:
	QuerySet: The set of marker variants that do NOT belong to marker unit (order by annotation type)

	
is_ordered(parallel='*')

	Check if the data order is static

	Args:
	
	parallel (str or bool, optional): indicates whether to check if the dataset order is parallel (True) or sequential (False)
	or that the exact order is not important is not important (‘*’, by default)

	Returns:
	bool: Indicator of whether the data is to be presented in a specified (optionally, with sequential or parallel dataset order)

	
is_sampled(replacement='*')

	Check if the data order is randomly sampled

	Args:
	
	replacement (str or bool, optional): indicates whether to the check if sampling with replacement (True) or not (False)
	or that the kind is not important (‘*’, by default)

	Returns:
	bool: Indicator of whether the data is to be sampled (optionally, with or without replacement)

	
property marker_groups

	
	Returns:
	QuerySet: The set of marker variants that belong to marker unit (order by annotation type)

	
class projects.models.Range(*args, **kwargs)

	Holds a definition for a numeric range, stores min, max and step (similar to Python’s range).
Currently this is used for specifying the possible numeric ranges for marker variants of types
‘integer’, ‘floating-point value’ and ‘range’.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	min_value (FloatField) – Minimal value

	max_value (FloatField) – Maximal value

	step (FloatField) – Step

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
clean()

	Hook for doing any extra model-wide validation after clean() has been
called on every field by self.clean_fields. Any ValidationError raised
by this method will not be associated with a particular field; it will
have a special-case association with the field defined by NON_FIELD_ERRORS.

	
class projects.models.Relation(*args, **kwargs)

	Holds a definition of a relation in Textinator.
We create each Relation only when creating a new project and can re-use Relations between the projects
(all Relations are available to all users).

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	name (CharField) – Name

	name_en (TranslationCharField) – Name [en]

	name_nl (TranslationCharField) – Name [nl]

	name_ru (TranslationCharField) – Name [ru]

	name_es (TranslationCharField) – Name [es]

	name_sv (TranslationCharField) – Name [sv]

	name_uk (TranslationCharField) – Name [uk]

	direction (CharField) – Direction

	shortcut (CharField) – Keyboard shortcut for marking a piece of text with this relation

	representation (CharField) – How should the relation be visualized?

	pairs (ManyToManyField) – Marker pairs

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
property between

	
	Returns:
	str: The string representation of the pairs of markers for which the relation can be annotated.

	
clean_fields(exclude=None)

	Clean all fields and raise a ValidationError containing a dict
of all validation errors if any occur.

	
get_deferred_fields()

	Return a set containing names of deferred fields for this instance.

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

	
class projects.models.RelationVariant(*args, **kwargs)

	Holds a project-specific definition for a previously defined Relation.
This model allows the project manager to customize a previously defined relation by:

	specifying different hotkey

	specifying a different visual representation (i.e., graph or list)

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	project_id (ForeignKey to Project) – Project

	relation_id (ForeignKey to Relation) – Relation template

	custom_shortcut (CharField) – Keyboard shortcut for marking a piece of text with this relation (shortcut of the relation template by default)

	custom_representation (CharField) – How should the relation be visualized? (representation of the relation template by default)

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
property between

	
	Returns:
	str: The string representation of the pairs of markers for which the relation can be annotated.

	
save(*args, **kwargs)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
class projects.models.TaskTypeSpecification(*args, **kwargs)

	Holds a specification for an annotation task type and is used when a project of the pre-defined annotation type
is instantiated. The specification describes markers and relations that are to be used for this annotation task.

Default specifications are created during the first startup of the server and can be found in the task_defaults.json

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	task_type (CharField) – Type of the annotation task

	config (JSONField) – Json configuration

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class projects.models.UserProfile(*args, **kwargs)

	An M2M model binding User and Project and holding additional information

NOTE: the additional information is currently not in use and is a candidate for removal/overhaul in future releases.

	Parameters

	
	id (AutoField) – Id

	dt_created (DateTimeField) – Autofilled

	dt_updated (DateTimeField) – Autofilled

	user_id (ForeignKey to User) – User

	project_id (ForeignKey to Project) – Project

	allowed_reviewing (BooleanField) – Whether the annotator is allowed to review for this project

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 projects	

 	
 	
 projects.models	

Index

 B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U

B

 	
 	Batch (class in projects.models)

 	Batch.DoesNotExist

 	
 	Batch.MultipleObjectsReturned

 	between (projects.models.Relation property)

 	(projects.models.RelationVariant property)

C

 	
 	clean() (projects.models.Range method)

 	clean_fields() (projects.models.Marker method)

 	(projects.models.Relation method)

 	
 	CommonModel (class in projects.models)

 	Context (class in projects.models)

 	Context.DoesNotExist

 	Context.MultipleObjectsReturned

D

 	
 	data() (projects.models.Project method)

 	DataAccessLog (class in projects.models)

 	DataAccessLog.DoesNotExist

 	
 	DataAccessLog.MultipleObjectsReturned

 	DataSource (class in projects.models)

 	DataSource.DoesNotExist

 	DataSource.MultipleObjectsReturned

F

 	
 	free_markers() (projects.models.Project method)

G

 	
 	get_count_restrictions() (projects.models.MarkerVariant method)

 	
 	get_deferred_fields() (projects.models.Marker method)

 	(projects.models.Relation method)

I

 	
 	Input (class in projects.models)

 	Input.DoesNotExist

 	Input.MultipleObjectsReturned

 	
 	is_ordered() (projects.models.Project method)

 	is_part_of_relation() (projects.models.Marker method)

 	is_sampled() (projects.models.Project method)

L

 	
 	Label (class in projects.models)

 	Label.DoesNotExist

 	Label.MultipleObjectsReturned

 	
 	LabelRelation (class in projects.models)

 	LabelRelation.DoesNotExist

 	LabelRelation.MultipleObjectsReturned

M

 	
 	Marker (class in projects.models)

 	Marker.DoesNotExist

 	Marker.MultipleObjectsReturned

 	marker_groups (projects.models.Project property)

 	MarkerAction (class in projects.models)

 	MarkerAction.DoesNotExist

 	MarkerAction.MultipleObjectsReturned

 	MarkerContextMenuItem (class in projects.models)

 	MarkerContextMenuItem.DoesNotExist

 	MarkerContextMenuItem.MultipleObjectsReturned

 	MarkerPair (class in projects.models)

 	MarkerPair.DoesNotExist

 	MarkerPair.MultipleObjectsReturned

 	
 	MarkerRestriction (class in projects.models)

 	MarkerRestriction.DoesNotExist

 	MarkerRestriction.MultipleObjectsReturned

 	MarkerUnit (class in projects.models)

 	MarkerUnit.DoesNotExist

 	MarkerUnit.MultipleObjectsReturned

 	MarkerVariant (class in projects.models)

 	MarkerVariant.DoesNotExist

 	MarkerVariant.MultipleObjectsReturned

 	max() (projects.models.MarkerVariant method)

 	min() (projects.models.MarkerVariant method)

 	
 module

 	projects.models

P

 	
 	PostProcessingMethod (class in projects.models)

 	PostProcessingMethod.DoesNotExist

 	PostProcessingMethod.MultipleObjectsReturned

 	PreMarker (class in projects.models)

 	PreMarker.DoesNotExist

 	
 	PreMarker.MultipleObjectsReturned

 	Project (class in projects.models)

 	Project.DoesNotExist

 	Project.MultipleObjectsReturned

 	
 projects.models

 	module

R

 	
 	Range (class in projects.models)

 	Range.DoesNotExist

 	Range.MultipleObjectsReturned

 	refresh_from_db() (projects.models.Marker method)

 	(projects.models.Relation method)

 	
 	Relation (class in projects.models)

 	Relation.DoesNotExist

 	Relation.MultipleObjectsReturned

 	RelationVariant (class in projects.models)

 	RelationVariant.DoesNotExist

 	RelationVariant.MultipleObjectsReturned

S

 	
 	save() (projects.models.CommonModel method)

 	(projects.models.Context method)

 	(projects.models.Marker method)

 	(projects.models.MarkerVariant method)

 	(projects.models.RelationVariant method)

T

 	
 	TaskTypeSpecification (class in projects.models)

 	
 	TaskTypeSpecification.DoesNotExist

 	TaskTypeSpecification.MultipleObjectsReturned

U

 	
 	UserProfile (class in projects.models)

 	
 	UserProfile.DoesNotExist

 	UserProfile.MultipleObjectsReturned

 _static/plus.png

_static/file.png

_static/minus.png

_images/add_project3.png
Projects @ Home / Projects / Projects

hboard Select project to change

0 projects

@ Pre-marker

@ Projects

_images/add_project_form.png
Projects @ Home / Projects / Projects / Add project

ashboard Add project [Z Actions
° General = TaskSpecification ~ Data Settings Administration Project-specific markers Project-specific relations ~ Pre-markers ‘ Save ‘
Data sour
® Morier ‘ Save and add another ‘
Title *
@ Markers ‘ Save and continue editing ‘
La .
. Pre-markers nguage
@ Fr
Short description *
Institution
Supported by
Publishing date * Date:
Time: Now|®
Expiration date *

Date: Today| &3

Time: Now|®

_images/add_project1.png
TEXTINATOR Y Profile v

X4 Welcome to Textinator! 8%

Thank you for choosing Textinator as your annotation toolt We've got a bunch of resources to get you started:

« iffyou prefer reading, here is the documentation
« if you prefer watching, here is the project manager guide on YouTube
« iff you prefer exploring on your own, just go for it! ©

Create anew data source My projects (admin)

English | Pycckuit | svenska | Ykpaicska

_images/add_project2.png
Dashboard

Projects

Data sources
Marker units
Markers
Pre-markers
Projects

Relations

Add | Change
Add | Change
Add | View
Add | Change
Add | dhange
Add | View

Recent actions

None available

@ Home / Dashboard

_images/cmi_open.png
Color . 4FF8063

Customized color for the annotated text span (color ofthe marker template by default)

Keyboard shortcut

P
Keyboard shortcut for annotating a piece of text with this marker (shortcut of the marker template by default
Annotation type Marker (text spans) -
The type of annotations made using this marker
Export name
The name of the field i the exported JSON file (English name by default)
Created at April 22,2022, 1:41 p.m.
Autofilled
Updatedat April 22,2022, 1:41 p.m.
Autofilled

Restrictions

Context menu items.

‘Add another Context Menu Item

_images/data_explorer_flagged.png
TINATOR

200

N

||||II||.|
s s s

12 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 28 29

® corectanswer @ Distractor

Progress (%) Data source sizes (texts)

100 300
. 250

200
50

150
2

100

Datasst 1 Dataset 2 Dataset 3 Datasst 4 Dataset 5
50
.ﬂmed O MMM siipped
_submitted GRS kipped -

GRS _submitted IR _skipped N —
@ submitied I _skivped o Dataset 1 Dataset 2 Dataset 3 Dataset & Dataset 5
M Flagged datapoint

User Comment Text sample
Svar text att forfatta fragor pa. #Volontarsarbete eller praktik ## Vad &r en fullmakt? En fullmakt kan vara ett undertecknat bre...

Svart att annotera dennatyp av text undvikas. L&r dig mer om systematiskt arbetsmiljdarbete och hur du kan forebygga arbetsmiljprobl...

Det hér ar bara slutet av en text. ## Chefer och arbetsledare ute i verksamheten behdver kunskaper om arbetsmiljon Chefer och arbet...

Halva texten # Ansvar for tillganglighet Det &r du som arbetsgivare som ansvarar fér att arbetsmiljon ar séke...

e
L]
[] Ingen kontext och konstigt format ## Verktyg for att gora arbetsmiljon mer jamstalld Genom att arbeta genusmedvetet kan du som arb...
ananyg
[]

_images/cmi.png
Color ' 4FF8063

Customized color o the annotated text span (color of the marker template by default)

Keyboard shortcut

P
Keyboard shortcutfor anotating apieceoftext with this marker (shortcut ofthe marker tmplate by

Annotation type Marker (text spans) -
The type of annotations made using this marker

Export name
The name of the field in the exported JSON file (English name by def

Created at April 22,2022, 1:41 p.m.
Autofl

Updatedat April 22,2022, 1:41 p.m.

Autofilled

Restrictions

Context menu items.

_images/cmi_new.png
Context menu items

“+ New Context menu item

Marker action *

Verbose name *

Field name in logs

JSON configuration

Created at

Updated at

Ifapplicable

null

May7,2022,2:29 p.m.
Autofilled

Autofilled

‘Add another Context Menu Item

_images/data_explorer_stat.png
XTINATOR

ort as JSON (gene

Back to the proj 3%

In total: 1116 batches, 3373 label(s), 0 relation(s), 0 input(s), 5 flagged text(s)

Label/input lengths (words) User timing (minutes)

800 300

|II|I|I|IIII|III B I o et

O R N A S
9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 28 S PSS

® comectanswer @ Distractor UM oANMWAARS < Mmb Ghaen

Progress (%,

)
. |
I !

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
50
.mﬂled O MMM siipped
_submitted GRS kipped
- submitied G <kipped . [] f—
© @M _submitted O @D _skipped . Dataset 1 Dataset 2 Dataset 3 Dataset 4. Dataset 5

M Flagged datapoints

Data source sizes (texts)

_images/data_explorer_time_report.png
1] of1 — [+ 180% v T8t »

TEXTINATOR

Time report for project "Flervalsfragor II"

User Month Time (h) # of inputs # of labels
Shatne December 2019 3.22 0 92
January 2020 9.66 0 416
February 2020 11.71 0 438
March 2020 5.09 0 312
April 2020 7.53 0 465
May 2020 12.16 0 644
June 2020 9.05 0 327
[] January 2020 2.1 0 128
February 2020 3.41 0 183
March 2020 1.97 0 135
May 2020 0.3 0 15

_images/add_data_source2.png
Dashboard

Projects

Data sources
Marker units
Markers
Pre-markers
Projects

Relations

Add

cfenge

Add

Change

Add

View

Change

Change

Add

View

@ Home / Dashboard

Recent actions

o Test project

Added “Test project”.

o Test (en)

Added “Test (en)”.

ours, 16 minutes

ours, 18 minutes

_images/add_data_source3.png
Data sources @ Home / Projects / Data sources

e Select data source to change

© Add data source

v 00f 1 selected

O Dataset name Dataset type
O Test Plain text

1data source

_images/add_data_source1.png
TEXTINATOR

X4 Welcome to Textinator! 8%

Thank you for choosing Textinator as your annotation toolt We've got a bunch of resources to get you started:

« iffyou prefer reading, here is the documentation
« if you prefer watching, here is the project manager guide on YouTube
« iff you prefer exploring on your own, just go for it! ©

Create a new data source | My projects (admin) Create a new project

English | Pycckuit | svenska | Ykpaicska

_images/add_data_source_form.png
ashboard

@ Data sourc

@ Marker

@ Markers
@ Pre-markers
@ Projects
@ Relations

Data sources

Add data source

Dataset name * | |

Dataset type * ‘

Specification *

Post-processing methods ‘

Language

Formatting *

Is public?

Created at

Updated at

owner

B D e e R R 1 AN riahte racoruad

@ Home / Projects / Datasources / Add data source

[# Actions

e \

Save and add another ‘

Save and continue editing ‘

e

_images/existing_marker_mod.png
ashboard

@ Datasour,
@ Marker

@ Markers
@ Pre-markers
@ Fr

General TaskSpecification Data Settings Administration | Project-specific markers | Project-specificrelations Pre-markers
Question<Test project> [Delete
Marker template * ‘ Question v
+
Numeric range .

integer, floating-poi

Marker unit ‘

Order in a unit

. #3273DC

d color for the annot
Keyboard shortcut

the marker template by default

Annotation type * Short free-text input .

Created at Jan. 16,2022, 3:48 p.m.
itoflled

Updatedat Jan. 16,2022, 3:48 p.m.
i

Restrictions

[# Actions

Save

Save as new

Save and continue editing

nav.xhtml

 Table of Contents

 		
 1.0.0 documentation

 		
 Tutorial

 		
 [Part 1] Exploring annotation tasks supported out-of-the-box

 		
 Question Answering

 		
 Question Answering with Ranking

 		
 Multiple Choice Question Answering

 		
 Multiple Choice Question Answering with Ranking

 		
 Named Entity Recognition

 		
 Pronoun Resolution

 		
 Co-reference Chain Resolution

 		
 Machine Translation

 		
 [Part 2] Adding a new data source

 		
 Which data source type should I choose?

 		
 What server is compatible with Texts API?

 		
 What if I really want to upload data via UI?

 		
 [Part 3] Creating your first project

 		
 [Part 4] Exploring a data explorer

 		
 Annotation statistics & progress tracking

 		
 Exporting annotations

 		
 PDF time report

 		
 [Part 5] Creating a custom annotation task

 		
 Minor modifications to out-of-the-box task types

 		
 Major modifications to out-of-the-box task types

 		
 Defining custom markers

 		
 Defining custom relations

 		
 [Part 6] Associating actions with your markers

 		
 [Part 7] Setting up human evaluation

 		
 Developer Documentation

 		
 Labeler Plugins API

 		
 API

 		
 Models

 		
 Batch

 		
 CommonModel

 		
 Context

 		
 DataAccessLog

 		
 DataSource

 		
 Input

 		
 Label

 		
 LabelRelation

 		
 Marker

 		
 MarkerAction

 		
 MarkerContextMenuItem

 		
 MarkerPair

 		
 MarkerRestriction

 		
 MarkerUnit

 		
 MarkerVariant

 		
 PostProcessingMethod

 		
 PreMarker

 		
 Project

 		
 Range

 		
 Relation

 		
 RelationVariant

 		
 TaskTypeSpecification

 		
 UserProfile

_images/label_context_menu.png

_images/label_context_menu1.png

_images/existing_marker_restrictions.png
Order of this mar

@
®

[Z Actions
Color . #3273DC
ashboard o ‘ Save ‘
Keyboard shortcut
\ \
rd shortc e 7 Shortcut of the marker template by default
@ Data sources
A Annotation type * Short free-text input . ‘ Save and continue editing ‘
Marker
@ Markers
Created at Jan. 16,2022, 3:48 p.m.
@ Pre-markers o
@ e Updated at Jan. 16,2022, 3:48 p.m.
d
Restrictions
+ New Restriction
Restriction kind * ‘ . .
Created at
Updated at .

‘Add another Restriction

_images/existing_rel_mod.png
ashboard

@ Datasource
@ Marker

@ Markers
@ Pre-markers
@ Fr

Projects @ Home / Projects / Projects / Test project
Change project [# Actions
General Task Specification Data Settings Administration Project-specific markers Project-specific relations Pre-markers ‘ Save ‘
\ P \
RelationVariant object (3) [Opelete

‘ Save and continue editing ‘

Relation template * Refers to .

Keyboard shortcut

Graphical
representation type

Created at

Updatedat Jan. 16,2022, 403 p.m.

Add another Project-Specific Relation

Copyright © 2022 Dmytro Kalpakchi. Al rights reserved. Jazzmin version 2.4.8

_images/marker_pair_example.png
Add marker pair

First* ‘ MAINMES
+
Second * ‘ SUPFACT
+
Created at Jan. 17,2022, 10:35 a.m.
Autofilled
Updated at
Autofilled

[# Actions

_images/mv_example.png
+ New Project-specific marker

Marker template * ‘ MAINMES -

s+

Numeric range

Applicable onlyif the annotation types are ‘integer, floating-point number'or ‘range Ifthe annotation type i range’ and no numeric range is specified, the input will
range from 0 to 100 by default. The values will emain unrestricted for ‘integer*or floating-point number' types.

Marker unit ‘ , -
Orderin a unit S
Order of this marker in the unit
Color
Customized color for the annotated text span (color of the marker template by default)
Keyboard shortcut
Keyboard shortcut for annotating a piece of text with this marker (shortcut of the marker template by default
Annotation type * Short free-text input -
The type of annotations made using this marker
Created at Jan. 17,2022, 10:03 a.m.
Autofilled
Updated at -
Autofilled

Restrictions

Context menu items

_images/logo.png

_images/marker_example.png
Add marker

Name [en]

Name [ru]

Name [sv]

Name [uk]

Color *

Keyboard shortcut

Created at

Updated at

MAINMES

The display name of the marker (max 50 characters)
The display name of the marker (max 50 characters)

The display name of the marker (max 50 characters)

Huvudbudskap

The display name of the marker (max 50 characters)

The display name of the marker (max 50 characters)

. #FF32FB

Color for the annotated text span

H

Keyboard shortcut for annotating a pece of text with this marker

Jan. 17,2022, 8557 a.m.
Autofilled

Autofilled

_images/profile_user_groups.png
INATOR Profile v

SETTINGS

Preferred language
Englishen) v
Fluent in
English (en)
Pyccxwi (1u)
svenska (sv)

Yipaincska (uk)

det

Your groups: project_managers

_images/proj_markers_tab.png
[# Actions

+ New Project-specific marker
e \

Marker template * - ‘

‘ Save and add another ‘
Numeric range -

‘ Save and continue editing ‘
Marker unit -

Order in a unit

Color

Keyboard shortcut

Annotation type *

Created at Jan. 17,2022, 9:47 a.m.
lled

Updated at

Restrictions

Context menu items.

_images/project_card.png
Test project

This is a test project

English

Finishes 1 week, 6 days from now

View

Project title

Short description
Project language

Time to publication
or expiration

_images/rv_form.png
+ New Project-specific relation

Relation template * .
+
Keyboard shortcut
Keyboard shortcut for marking a piece of text with this relation (shortcut of the relation template by default]
Graphical Graph .
representation type
"How should the relation be visualized? (representation of the relation template by default]
Created at Jan. 17,2022, 10:43 a.m.
Autofilled
Updated at .

Autofiled

_images/survey_anonymous.png
Users can seeitand
answer it

Only authenticated

users can see it and
answer it

Users can edit their
answers afterwards

0 WORDS POWERED BY TINY

Display method * By question

Template

Publication date 2022:01-17 Today| &

Expiration date 2022-01-24 Today |8

External redirect

[# Actions

Save

Save and add another

Save and continue editing

_images/relation_example.png
Add relation

Name [en]

Name [ru]

Name [sv]

Name [uk]

Marker pairs *

Direction *

Keyboard shortcut

Graphical representation
type*

Created at

Updated at

Supports

‘ [] MAL1642415680_4977-

+-SUP_1642415712_5877

+
Hold down “Control’; or “Command” on a Mac, to select more than one.

‘ Directed from the second to the first

Keyboard shortcut for marking a pece of text with this relation

‘ Graph

How should the relation be visualized?

Jan.17,2022,1035 am.
Autofilled

Autofilled

_images/relation_form.png
Add relation

Name [en]

Name [ru]

Name [sv]

Name [uk]

Marker pairs *

Direction *

Keyboard shortcut

Graphical representation
type*

Created at

Updated at

+

Hold down “Control’,or “C

nmand”on a Mac, to select.

an one.

Graph

How should the rel

bevisualized?

Jan.17,2022,10:39 am.
py

Autofilled

_images/survey_index.png
TEXTINATOR

My First Survey (expires Jan. 24, 2022)

My Second Survey (expires Jan. 24, 2022)

_images/surveys_tab.png
TEXTINATOR

X4 Welcome to Textinator! 8%

Thank you for choosing Textinator as your annotation toolt We've got a bunch of resources to get you started:

« iffyou prefer reading, here is the documentation
« if you prefer watching, here is the project manager guide on YouTube
« iff you prefer exploring on your own, just go for it! ©

» Quick links.

English | Pycckuit | svenska | Ykpaicska

_images/survey_example.png
TEXTINATOR

My First Survey

Sentence: Does it work?
Paraphrase: Would it work?

Fluency *
00 01 02
Equivalence +

00 O1 02 O3

_images/survey_import_from_json.png
Surveys @ Home / Scientific survey / Surveys

Add survey

Select survey to change - -
Users can seeitand answerit v

‘ Only authenticated users can see it and answer it +

I & Import from JSON |

v . 00f 2 selected

O Name Users can see it and answer it Only authenticated users can see it and answer it Template
O Mysecond Survey o o -
O MyFirstSurvey ° ° -

2surveys

_images/ui_default_mcqa.png
TEXTINATOR

.
D - oo Asibmit B Newten

Reminders GUIDELINES

No reminders are set

Which tutorial are we using?

consctanswer Y [oistecor EIED

_images/ui_default_mcqa_ranking.png
TEXTINATOR " My projects sk v v ¢ Profile v

=

This is my first Textinator tutorial 4 Submit B New text

Reminders GUIDELINES

No reminders are set

Marker groups

-
* =
s
s
e
+ -
o
o
e

_images/ui_default_coreference_resolution.png
TEXTINATOR

T}

@ Textinator...

This
o™ @

@ Remove relation

_

A Submit B New text

Rel

lers

No reminders are set

_images/ui_default_pronoun_resolution.png
TEXTINATOR

oy e [EERREEIER

@ Remove relation

_

A Submit B New text

Rel

lers UIDELINES

No reminders are set

_images/ui_default_qa.png
TINATOR

o
This s my frst [EXURGIONE tutorial 4 submit B Newtext

Reminders GUIDELINES

No reminders are set

_images/ui_default_mt.png
TINATOR

) T ——

This is my first Textinator tutorial 4 Submit B New text

Reminders

No reminders are set

Lie MOE Neplue KEpIBHULTBO 3 KOPUCTYBaHHS TeKCTiHaTOpoM.

_images/ui_default_ner.png
TEXTINATOR

I
first -lulorial A Submit B New text

Reminders GUIDELINES

No reminders are set

This is

_images/ui_default_qa_ranking.png
TEXTINATOR " My projects sk v v ¢ Profile v

=

This is my first Textinator tutorial 4 Submit B New text

Reminders GUIDELINES

No reminders are set
Marker groups

